Physiology最新文献

筛选
英文 中文
Pulmonary Vascular Dysfunctions in Cystic Fibrosis. 囊性纤维化的肺血管功能障碍。
IF 5.3 2区 医学
Physiology Pub Date : 2024-07-01 Epub Date: 2024-03-19 DOI: 10.1152/physiol.00024.2023
Jean-Pierre Amoakon, Goutham Mylavarapu, Raouf S Amin, Anjaparavanda P Naren
{"title":"Pulmonary Vascular Dysfunctions in Cystic Fibrosis.","authors":"Jean-Pierre Amoakon, Goutham Mylavarapu, Raouf S Amin, Anjaparavanda P Naren","doi":"10.1152/physiol.00024.2023","DOIUrl":"10.1152/physiol.00024.2023","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is an inherited disorder caused by a deleterious mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Given that the CFTR protein is a chloride channel expressed on a variety of cells throughout the human body, mutations in this gene impact several organs, particularly the lungs. For this very reason, research regarding CF disease and CFTR function has historically focused on the lung airway epithelium. Nevertheless, it was discovered more than two decades ago that CFTR is also expressed and functional on endothelial cells. Despite the great strides that have been made in understanding the role of CFTR in the airway epithelium, the role of CFTR in the endothelium remains unclear. Considering that the airway epithelium and endothelium work in tandem to allow gas exchange, it becomes very crucial to understand how a defective CFTR protein can impact the pulmonary vasculature and overall lung function. Fortunately, more recent research has been dedicated to elucidating the role of CFTR in the endothelium. As a result, several vascular dysfunctions associated with CF disease have come to light. Here, we summarize the current knowledge on pulmonary vascular dysfunctions in CF and discuss applicable therapies.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation? 我们的大脑如何处理积极和消极的热感线索?
IF 5.3 2区 医学
Physiology Pub Date : 2024-07-01 Epub Date: 2024-03-27 DOI: 10.1152/physiol.00034.2023
Jose G Grajales-Reyes, Bandy Chen, David Meseguer, Marc Schneeberger
{"title":"Burning Question: How Does Our Brain Process Positive and Negative Cues Associated with Thermosensation?","authors":"Jose G Grajales-Reyes, Bandy Chen, David Meseguer, Marc Schneeberger","doi":"10.1152/physiol.00034.2023","DOIUrl":"10.1152/physiol.00034.2023","url":null,"abstract":"<p><p>Whether it is the dramatic suffocating sensation from a heat wave in the summer or the positive reinforcement arising from a hot drink on a cold day; we can certainly agree that our thermal environment underlies our daily rhythms of sensation. Extensive research has focused on deciphering the central circuits responsible for conveying the impact of thermogenesis on mammalian behavior. Here, we revise the recent literature responsible for defining the behavioral correlates that arise from thermogenic fluctuations in mammals. We transition from the physiological significance of thermosensation to the circuitry responsible for the autonomic or behavioral responses associated with it. Subsequently, we delve into the positive and negative valence encoded by thermoregulatory processes. Importantly, we emphasize the crucial junctures where reward, pain, and thermoregulation intersect, unveiling a complex interplay within these neural circuits. Finally, we briefly outline fundamental questions that are pending to be addressed in the field. Fully deciphering the thermoregulatory circuitry in mammals will have far-reaching medical implications. For instance, it may lead to the identification of novel targets to overcome thermal pain or allow the maintenance of our core temperature in prolonged surgeries.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control. 下丘脑星形胶质细胞和神经元在新陈代谢控制中的协同作用
IF 5.3 2区 医学
Physiology Pub Date : 2024-07-01 Epub Date: 2024-03-26 DOI: 10.1152/physiol.00009.2024
Laura M Frago, Alfonso Gómez-Romero, Roberto Collado-Pérez, Jesús Argente, Julie A Chowen
{"title":"Synergism Between Hypothalamic Astrocytes and Neurons in Metabolic Control.","authors":"Laura M Frago, Alfonso Gómez-Romero, Roberto Collado-Pérez, Jesús Argente, Julie A Chowen","doi":"10.1152/physiol.00009.2024","DOIUrl":"10.1152/physiol.00009.2024","url":null,"abstract":"<p><p>Astrocytes are no longer considered as passive support cells. In the hypothalamus, these glial cells actively participate in the control of appetite, energy expenditure, and the processes leading to obesity and its secondary complications. Here we briefly review studies supporting this conclusion and the advances made in understanding the underlying mechanisms.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't. 基于胰岛素的多拮抗剂的药理研究进展--我们知道什么,我们不知道什么t.
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 Epub Date: 2024-02-14 DOI: 10.1152/physiol.00032.2023
Aaron Novikoff, Timo D Müller
{"title":"Pharmacological Advances in Incretin-Based Polyagonism: What We Know and What We Don't.","authors":"Aaron Novikoff, Timo D Müller","doi":"10.1152/physiol.00032.2023","DOIUrl":"10.1152/physiol.00032.2023","url":null,"abstract":"<p><p>The prevalence of obesity continues to rise in both adolescents and adults, in parallel obesity is strongly associated with the increased incidence of type 2 diabetes, heart failure, certain types of cancer, and all-cause mortality. In relation to obesity, many pharmacological approaches of the past have tried and failed to combat the rising obesity epidemic, particularly due to insufficient efficacy or unacceptable side effects. However, while the history of antiobesity medication is plagued by failures and disappointments, we have witnessed over the last 10 years substantial progress, particularly in regard to biochemically optimized agonists at the receptor for glucagon-like peptide-1 (GLP-1R) and unimolecular coagonists at the receptors for GLP-1 and the glucose-dependent insulinotropic polypeptide (GIP). Although the GIP receptor:GLP-1R coagonists are being heralded as premier pharmacological tools for the treatment of obesity and diabetes, uncertainty remains as to why these drugs testify superiority over best-in-class GLP-1R monoagonists. Particularly with regard to GIP, there remains great uncertainty if and how GIP acts on systems metabolism and if the GIP system should be activated or inhibited to improve metabolic outcome in adjunct to GLP-1R agonism. In this review, we summarize recent advances in GLP-1- and GIP-based pharmacology and discuss recent findings and open questions related to how the GIP system affects systemic energy and glucose metabolism.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"142-156"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139730833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IUPS: Physiology on a Global Scale. IUPS:全球范围的生理学。
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 DOI: 10.1152/physiol.00005.2024
Susan Wray
{"title":"IUPS: Physiology on a Global Scale.","authors":"Susan Wray","doi":"10.1152/physiol.00005.2024","DOIUrl":"10.1152/physiol.00005.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 3","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Pathophysiological Roles of Ketone Bodies. 新出现的酮体的病理生理作用。
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 Epub Date: 2024-01-23 DOI: 10.1152/physiol.00031.2023
Hiroaki Tsuruta, Kosuke Yamahara, Mako Yasuda-Yamahara, Shinji Kume
{"title":"Emerging Pathophysiological Roles of Ketone Bodies.","authors":"Hiroaki Tsuruta, Kosuke Yamahara, Mako Yasuda-Yamahara, Shinji Kume","doi":"10.1152/physiol.00031.2023","DOIUrl":"10.1152/physiol.00031.2023","url":null,"abstract":"<p><p>The discovery of insulin approximately a century ago greatly improved the management of diabetes, including many of its life-threatening acute complications like ketoacidosis. This breakthrough saved many lives and extended the healthy lifespan of many patients with diabetes. However, there is still a negative perception of ketone bodies stemming from ketoacidosis. Originally, ketone bodies were thought of as a vital source of energy during fasting and exercise. Furthermore, in recent years, research on calorie restriction and its potential impact on extending healthy lifespans, as well as studies on ketone bodies, have gradually led to a reevaluation of the significance of ketone bodies in promoting longevity. Thus, in this review, we discuss the emerging and hidden roles of ketone bodies in various organs, including the heart, kidneys, skeletal muscles, and brain, as well as their potential impact on malignancies and lifespan.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139522105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies. 苍蝇起搏神经元氯离子振荡对昼夜节律的调节
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 Epub Date: 2024-02-27 DOI: 10.1152/physiol.00006.2024
Aylin R Rodan
{"title":"Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies.","authors":"Aylin R Rodan","doi":"10.1152/physiol.00006.2024","DOIUrl":"10.1152/physiol.00006.2024","url":null,"abstract":"<p><p>Circadian rhythms in physiology and behavior sync organisms to external environmental cycles. Here, circadian oscillation in intracellular chloride in central pacemaker neurons of the fly, <i>Drosophila melanogaster</i>, is reviewed. Intracellular chloride links SLC12 cation-coupled chloride transporter function with kinase signaling and the regulation of inwardly rectifying potassium channels.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. 用组织的多细胞分析补充细胞分类法。
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 Epub Date: 2024-02-06 DOI: 10.1152/physiol.00001.2024
Ricardo Omar Ramirez Flores, Philipp Sven Lars Schäfer, Leonie Küchenhoff, Julio Saez-Rodriguez
{"title":"Complementing Cell Taxonomies with a Multicellular Analysis of Tissues.","authors":"Ricardo Omar Ramirez Flores, Philipp Sven Lars Schäfer, Leonie Küchenhoff, Julio Saez-Rodriguez","doi":"10.1152/physiol.00001.2024","DOIUrl":"10.1152/physiol.00001.2024","url":null,"abstract":"<p><p>The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology in Perspective. 透视生理学
IF 5.3 2区 医学
Physiology Pub Date : 2024-05-01 DOI: 10.1152/physiol.00016.2024
Nikki Forrester
{"title":"Physiology in Perspective.","authors":"Nikki Forrester","doi":"10.1152/physiol.00016.2024","DOIUrl":"10.1152/physiol.00016.2024","url":null,"abstract":"","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"39 3","pages":"128"},"PeriodicalIF":5.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. 从节拍到新陈代谢:器官间串联的核心是心脏。
IF 5.3 2区 医学
Physiology Pub Date : 2024-03-01 Epub Date: 2023-12-05 DOI: 10.1152/physiol.00018.2023
Rafael Romero-Becera, Ayelén M Santamans, Alba C Arcones, Guadalupe Sabio
{"title":"From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk.","authors":"Rafael Romero-Becera, Ayelén M Santamans, Alba C Arcones, Guadalupe Sabio","doi":"10.1152/physiol.00018.2023","DOIUrl":"10.1152/physiol.00018.2023","url":null,"abstract":"<p><p>The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"98-125"},"PeriodicalIF":5.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信