Polish Maritime Research最新文献

筛选
英文 中文
Concept of Vibroacoustic Diagnostics of the Fuel Injection and Electronic Cylinder Lubrication Systems of Marine Diesel Engines 船用柴油机燃油喷射和电子缸润滑系统的振动声诊断概念
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-12-01 DOI: 10.2478/pomr-2022-0046
R. Varbanets, Oleksandr Shumylo, A. Marchenko, D. Minchev, V. Kyrnats, V. Zalozh, N. Aleksandrovska, Roman Brusnyk, Kateryna Volovyk
{"title":"Concept of Vibroacoustic Diagnostics of the Fuel Injection and Electronic Cylinder Lubrication Systems of Marine Diesel Engines","authors":"R. Varbanets, Oleksandr Shumylo, A. Marchenko, D. Minchev, V. Kyrnats, V. Zalozh, N. Aleksandrovska, Roman Brusnyk, Kateryna Volovyk","doi":"10.2478/pomr-2022-0046","DOIUrl":"https://doi.org/10.2478/pomr-2022-0046","url":null,"abstract":"Abstract Although direct measurements of the fuel injection pressure and the travel of the injector needle in conjunction with measurements of the valve train mechanism timing can provide complete diagnostic information about the technical conditions of the fuel injection and valve train systems, this requires the installation of sensors and other equipment directly into the systems, which is possible within research laboratories but is generally forbidden during operation of the ship. Malfunctions in the fuel injection and valve train systems can also be identified from the indicator diagrams of an engine operating cycle, expressed as P(V) and P(deg) diagrams. The basic parameters of the engine operating cycle, such as the maximum combustion pressure Pmax, compression pressure Pcompr, and indicated mean effective pressure IMEP, can also be used to indicate deviations from proper engine operation. Using a combination of a vibration sensor with an in-cylinder gas pressure sensor widens the capabilities of diagnostics for marine diesel engines under operational conditions. A vibration sensor with a magnetic base can help in determining the timings of the lifting and landing of the injector needle, fuel delivery by the fuel injection pump, opening and closing of the circulation of heated heavy fuel oil, and opening and closing of the gas distribution valves. This also offers a promising solution for diagnostics of the cylinder lubrication oil injectors. The proposed approach allows valuable information to be received during engine operation in accordance with the principle of non-destructive control, and can help in early detection of possible engine malfunctions.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45314296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Review of the Container Ship Loading Model – Cause Analysis of Cargo Damage and/or Loss 集装箱船装载模型回顾-货物毁损和/或灭失原因分析
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-12-01 DOI: 10.2478/pomr-2022-0041
M. Kaup, D. Łozowicka, Karolina Baszak, W. Ślączka, A. Kalbarczyk-Jedynak
{"title":"Review of the Container Ship Loading Model – Cause Analysis of Cargo Damage and/or Loss","authors":"M. Kaup, D. Łozowicka, Karolina Baszak, W. Ślączka, A. Kalbarczyk-Jedynak","doi":"10.2478/pomr-2022-0041","DOIUrl":"https://doi.org/10.2478/pomr-2022-0041","url":null,"abstract":"Abstract As the maritime transport of containers continues to grow and container ships change in terms of design and construction, it is important to ensure the appropriate level of safety for this type of transport. Over the decades, the size and cargo capacity of container ships have been changing, and so have their manoeuvring restrictions and required stability criteria. It seems that changes in the regulations, technological development and increased stability requirements are not yielding satisfactory results – the causes of container ship accidents continue to show similar patterns. The present article refers to the problem of ensuring safety in sea container transport, with a particular focus on cargo processes. Its purpose is to determine cause-and-effect relations leading to the loss of containers at sea, and to develop a model of loading that could significantly raise the level of safety of container transport. The article provides a general description of threats to ships related to weather conditions, loading methods or stability limitations. A statistical analysis of the occurrence of damage and/or loss of cargo from container ships was carried out and the risk of cargo loss was assessed on the basis of data from 2015‒2019. A Pareto diagram was used for this purpose. The authors present the concept of the container ship loading model, which may contribute to increasing the safety of shipping in the future.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47293640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy and Emission Quality Ranking of Newly Produced Low-Sulphur Marine Fuels 新生产的低硫船用燃料能源和排放质量排名
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-12-01 DOI: 10.2478/pomr-2022-0045
Z. Korczewski
{"title":"Energy and Emission Quality Ranking of Newly Produced Low-Sulphur Marine Fuels","authors":"Z. Korczewski","doi":"10.2478/pomr-2022-0045","DOIUrl":"https://doi.org/10.2478/pomr-2022-0045","url":null,"abstract":"Abstract The article describes the methodology of engine tests on new types of low-sulphur marine fuels in laboratory conditions in order to conduct a comprehensive assessment of their suitability for powering full-size marine engines. The innovativeness of the proposed solution consists of adapting the laboratory Diesel Engine Test Bed to carry out experimental tests using residual and alternative fuels so that it is possible to imitate the real operating conditions of the ship engine. The main aim of the research program was to assess the energy efficiency of six different low-sulphur marine fuels and their impact on the chemical emissivity of engine exhaust gases and air pollution with toxic and harmful chemical compounds. In order to achieve the research purpose formulated in this way, it was necessary to: (1) equip the constructed laboratory stand with highly specialised measuring equipment and (2) develop a technology for determining diagnostic parameters representing the basis for developing a ranking of the energy and emission quality of the tested marine fuels according to the proposed physical model. The model distinguishes 10 diagnostic parameters that, after normalisation, form two subsets of evaluation parameters - stimulant and destimulant. Determining their values made it possible to estimate a synthetic variable, according to which all the tested fuels were adjusted in the order from the “best” to the “worst”, in accordance with the adopted qualitative criteria of such an assessment. The results of the laboratory tests show that among the considered fuels, i.e., MDO, MGO, RMD 80/L, RMD 80/S, RME 180, and RMG 380 type, the best solution is to use MDO distillate fuel to power full-size marine engines. However, taking into account its high purchase price, a rational alternative decision is to choose RMG 380 type residual fuel, which ranks second in the ranking of the functional quality of the tested marine fuels.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44011929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Experimental Research of the Impact of Ship’s Rolling on the Performance of PV Panels 船舶横摇对光伏板性能影响的实验研究
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-12-01 DOI: 10.2478/pomr-2022-0051
W. Zeńczak, Z. Zapałowicz
{"title":"Experimental Research of the Impact of Ship’s Rolling on the Performance of PV Panels","authors":"W. Zeńczak, Z. Zapałowicz","doi":"10.2478/pomr-2022-0051","DOIUrl":"https://doi.org/10.2478/pomr-2022-0051","url":null,"abstract":"Abstract The aim of the International Maritime Organization (IMO) to reduce by half the amount of greenhouse gases emitted by marine ships by 2050, and its vision of the fastest total decarbonisation in the maritime shipping industry within the present century, calls for implementation with various means of decarbonisation. The IMO approaches the process of decarbonisation in two phases. Firstly, short-term, compact projects are to be considered, next, more complex, medium- and long-term solutions should be aimed at. The preferred arrangements to be applied are photovoltaic systems. Their performance depends to a high degree on the solar incidence angle. In the case of a ship swinging as a result of its course in relation to the wave and incidence direction, the incidence angle undergoes significant periodic changes with a significant effect on the power generated by the PV panels. As a result, the total amount of energy produced by the PV panels diminishes. The paper presents experimental research results obtained on the stand that allowed the investigation of PV panels in simulated marine conditions. Two characteristic positions of a PV panel’s rotation axis in relation to the solar rays’ incidence direction were investigated. It was proved for both variants that the rolling period and solar incidence angle affected the power generated by the PV panel.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47851754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autonomous Control of the Underwater Remotely Operated Vehicle in Collision Situation with Stationary Obstacle 水下遥控车辆与静止障碍物碰撞时的自主控制
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-12-01 DOI: 10.2478/pomr-2022-0043
R. Smierzchalski, Maciej Kapczyński
{"title":"Autonomous Control of the Underwater Remotely Operated Vehicle in Collision Situation with Stationary Obstacle","authors":"R. Smierzchalski, Maciej Kapczyński","doi":"10.2478/pomr-2022-0043","DOIUrl":"https://doi.org/10.2478/pomr-2022-0043","url":null,"abstract":"Abstract The article considers the problem of autonomous control of the underwater remotely operated vehicle mini Remotely Operated Vehicle (ROV) in a collision situation with a stationary obstacle. The control of the collision avoidance process is presented as a synthesis of fuzzy proportional-differential controllers for the control of distance and orientation concerning the detected stationary obstacle. The control of the submergence depth of the underwater vehicle has been adopted as a separate control flow. A method to obtain the main motion parameters of the underwater vehicle relative to the detected stationary obstacle using a Laser-based Vision System (LVS) and a pressure sensor coupled to an Inertial Measurement Unit (IMU) is described and discussed. The result of computer implementation of the designed fuzzy controllers for collision avoidance is demonstrated in simulation tests and experiments carried out with the mini ROV in the test pool.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44447135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flow Field Characteristic Analysis of Cushion System of Partial Air Cushion Support Catamaran in Regular Waves 规则波中部分气垫支撑双体船缓冲系统流场特性分析
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-09-01 DOI: 10.2478/pomr-2022-0024
Jinglei Yang, Hanbing Sun, Xiao-wen Li, Xin Liu
{"title":"Flow Field Characteristic Analysis of Cushion System of Partial Air Cushion Support Catamaran in Regular Waves","authors":"Jinglei Yang, Hanbing Sun, Xiao-wen Li, Xin Liu","doi":"10.2478/pomr-2022-0024","DOIUrl":"https://doi.org/10.2478/pomr-2022-0024","url":null,"abstract":"Abstract In order to study the flow field characteristics of cushion system of partial air cushion support catamaran (PACSCAT) in waves, an analysis was carried out involving flexible treatment on the bow and stern air seals to simulate air seal shape under test conditions by means of computational fluid dynamics method and fluid structure interaction (FSI) method. On this basis, the pressure conditions of the air cushion chamber and the pressurized chamber at different wavelengths and different speeds are studied and compared with experimental results. The experimental results show that: for the air cushion pressure, the nonlinear characteristics of the numerical calculation results are more subtle than the experimental values, after linear transformation, the amplitudes of the experimental values are obviously greater than the calculated values after linear transformation, but the average values are not much different; At low speed of 2.0m/s, the spatial pressure distribution of the pressurized chamber and the air cushion chamber are uniformly distributed, at high speed of 3.6m/s, except for a certain pressure jump occurred in the air cushion chamber near the stern air seal, the pressure in other spaces is also evenly distributed, it proves that the pressurized chamber type of air intake can effectively meet the air cushion pressure balance.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44628454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Assisted Propulsion Device of a Semi-Submersible Ship Based on the Magnus Effect 基于马格纳斯效应的半潜船辅助推进装置
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-09-01 DOI: 10.2478/pomr-2022-0023
Jing Lv, Yiqun Lin, Rui Zhang, Boyang Li, Hualin Yang
{"title":"Assisted Propulsion Device of a Semi-Submersible Ship Based on the Magnus Effect","authors":"Jing Lv, Yiqun Lin, Rui Zhang, Boyang Li, Hualin Yang","doi":"10.2478/pomr-2022-0023","DOIUrl":"https://doi.org/10.2478/pomr-2022-0023","url":null,"abstract":"Abstract The purpose of this study is to explore the potentiality of wind propulsion on semi-submersible ships. A new type of Flettner rotor (two rotating cylinders) system installed on a semi-submersible ship is proposed. The structure and installation of two cylinders with a height of 20 m and a diameter of 14 m are introduced. The numerical simulation of the cylinder is carried out in Fluent software. The influence of apparent wind angle and spin ratio on the two cylinders are analysed, when the distance between two cylinders is 3D-13D (D is cylinder diameter). When the distance between two cylinders is 3D, the performance of the system increases with an increase in spin ratio. Moreover, the apparent wind angle also has an effect on the system performance. Specifically, the thrust contribution of the system at the apparent wind angle of 120° is the largest at the spin ratio of 3.0. The maximum thrust reaches 500 kN. When the spin ratio is 2.5 and the apparent wind angle is 120°, the maximum effective power of the system is 1734 kW. In addition, the influence of the two cylinders distance on system performance cannot be ignored. When the distance between the two cylinders is 7D and the spin ratio is 2.5, the effective power of the system reaches a maximum, which is 1932 kW.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46698738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical Modelling of Marine Power Plants with Thermochemical Fuel Treatment 采用热化学燃料处理的船用发电厂数学模型
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-09-01 DOI: 10.2478/pomr-2022-0030
Oleksandr Cherednichenko, S. Serbin, Mykhaylo Tkach, J. Kowalski, Daifen Chen
{"title":"Mathematical Modelling of Marine Power Plants with Thermochemical Fuel Treatment","authors":"Oleksandr Cherednichenko, S. Serbin, Mykhaylo Tkach, J. Kowalski, Daifen Chen","doi":"10.2478/pomr-2022-0030","DOIUrl":"https://doi.org/10.2478/pomr-2022-0030","url":null,"abstract":"Abstract The article considers the methodological aspects of the theoretical investigation of marine power plants with thermochemical fuel treatment. The results of the study of the complex influence of temperature, pressure, and the ratio of steam / base fuel on the thermochemical treatment efficiency are presented. The adequacy of the obtained regression dependences was confirmed by the physical modelling of thermochemical fuel treatment processes. For a gas turbine power complex with a thermochemical fuel treatment system, the characteristics of the power equipment were determined separately with further merging of the obtained results and a combination of material and energy flow models. Algorithms, which provide settings for the mathematical models of structural and functional blocks, the optimisation of thermochemical energy transformations, and verification of developed models according to the indicators of existing gas turbine engines, were created. The influence of mechanical energy consumption during the organisation of thermochemical processing of fuel on the efficiency of thermochemical recuperation is analysed.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44580473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
An Improved Dynamic Surface Sliding Mode Method for Autonomous Cooperative Formation Control of Underactuated USVS with Complex Marine Environment Disturbances 复杂海洋环境扰动下欠驱动usv自主协同编队控制的改进动态表面滑模方法
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-09-01 DOI: 10.2478/pomr-2022-0025
Zaopeng Dong, Shijie Qi, Min Yu, Zheng Zhang, Haisheng Zhang, Jiakang Li, Yang Liu
{"title":"An Improved Dynamic Surface Sliding Mode Method for Autonomous Cooperative Formation Control of Underactuated USVS with Complex Marine Environment Disturbances","authors":"Zaopeng Dong, Shijie Qi, Min Yu, Zheng Zhang, Haisheng Zhang, Jiakang Li, Yang Liu","doi":"10.2478/pomr-2022-0025","DOIUrl":"https://doi.org/10.2478/pomr-2022-0025","url":null,"abstract":"Abstract In this paper, a novel dynamic surface sliding mode control (DSSMC) method, combined with a lateral velocity tracking differentiator (LVTD), is proposed for the cooperative formation control of underactuated unmanned surface vehicles (USVs) exposed to complex marine environment disturbances. Firstly, in view of the kinematic and dynamic models of USVs and the design idea of a virtual control law in a backstepping approach, the trajectory tracking control problem of USVs’ cooperative formation is transformed into a stabilisation problem of the virtual control law of longitudinal and lateral velocities. Then, aiming at the problem of differential explosion caused by repeated derivation in the process of backstepping design, the first-order low-pass filter about the virtual longitudinal velocity and intermediate state quantity of position is constructed to replace differential calculations during the design of the control law, respectively. In order to reduce the steady-state error when stabilising the virtual lateral velocity control law, the integral term is introduced into the design of the sliding mode surface with a lateral velocity error, and then the second-order sliding mode surface with an integral is structured. In addition, due to the problem of controller oscillation and the role of the tracking differentiator (TD) in active disturbance rejection control (ADRC), the LVTD is designed to smooth the state quantity of lateral velocity. Subsequently, based on the dynamic model of USV under complex marine environment disturbances, the nonlinear disturbance observer is designed to observe the disturbances and compensate the control law. Finally, the whole cooperative formation system is proved to be uniformly and ultimately bounded, according to the Lyapunov stability theory, and the stability and validity of the method is also verified by the simulation results.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42139619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Influence of Material Thickness on the Ductile Fracture of Steel Plates for Shipbuilding 材料厚度对造船用钢板韧性断裂的影响
IF 2 3区 工程技术
Polish Maritime Research Pub Date : 2022-09-01 DOI: 10.2478/pomr-2022-0036
J. Kowalski, J. Kozák
{"title":"Influence of Material Thickness on the Ductile Fracture of Steel Plates for Shipbuilding","authors":"J. Kowalski, J. Kozák","doi":"10.2478/pomr-2022-0036","DOIUrl":"https://doi.org/10.2478/pomr-2022-0036","url":null,"abstract":"Abstract In the shipbuilding industry, the risk of brittle fractures is relatively high because some units operate in arctic or subarctic zones and use high thickness (up to 100 mm) steel plates in their structures. This risk is limited by employing certified materials with a specific impact strength, determined using the Charpy method (for a given design temperature) and by exercising control over the welding processes (technology qualification, production supervision, and non-destructive tests). However, for offshore constructions, such requirements may prove insufficient. For this reason, regulations employed in constructing offshore structures require conducting crack tip opening displacement (CTOD) tests for steel and welded joints with thicknesses exceeding 40 mm for high tensile strength steel and 50 mm for other steel types. Since classification codes do not accept the results of CTOD tests conducted on specimens of sub-sized dimensions, the problem of theoretically modelling the steel construction destruction process is of key importance, as laboratory tests for notched elements of considerable thickness (100 mm and higher) are costly and problems stemming from high loads and a wide range of recorded parameters are not uncommon. The aim of this research is to find a relationship between material thickness and CTOD value, by establishing and verifying a numerical model that allows recalculating a result obtained on a sub-size specimen to a full- size specimen for a ductile fracture mode. This work presents results and conclusions from numerical modelling and compares them with laboratory test results of the elastic-plastic properties of high thickness steel, typically used in offshore applications.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44680351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信