A Method for the Interpretation of Sonar Data Recorded during Autonomous Underwater Vehicle Missions

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE
M. Zieja, W. Wawrzyński, J. Tomaszewska, Norbert Sigiel
{"title":"A Method for the Interpretation of Sonar Data Recorded during Autonomous Underwater Vehicle Missions","authors":"M. Zieja, W. Wawrzyński, J. Tomaszewska, Norbert Sigiel","doi":"10.2478/pomr-2022-0038","DOIUrl":null,"url":null,"abstract":"Abstract Image acquisition from autonomous underwater vehicles (AUVs) is useful for mapping objects on the seabed. However, there are few studies on the interpretation of data collected with side-scan sonar during autonomous underwater vehicle missions. By recording the seabed with 3D multibeam sonar, a large number of survey points can be obtained. The collected data are processed using applications based on remote sensing image processing. The data collected during AUV missions (or other sonar carriers) needs to be pre-processed to reach the proper effectiveness level. This process includes corrections of signal amplification (Time Varying Gain, or TVG) and geometric distortions of sonar images (Slant Range Corrections). It should be mentioned that, when carrying out the interpretation process for structures on the sea floor, sonar users need to understand the process of visualising seabed projections and depressions, as well as the resolution limitations of the sonar sensors.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"29 1","pages":"176 - 186"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0038","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image acquisition from autonomous underwater vehicles (AUVs) is useful for mapping objects on the seabed. However, there are few studies on the interpretation of data collected with side-scan sonar during autonomous underwater vehicle missions. By recording the seabed with 3D multibeam sonar, a large number of survey points can be obtained. The collected data are processed using applications based on remote sensing image processing. The data collected during AUV missions (or other sonar carriers) needs to be pre-processed to reach the proper effectiveness level. This process includes corrections of signal amplification (Time Varying Gain, or TVG) and geometric distortions of sonar images (Slant Range Corrections). It should be mentioned that, when carrying out the interpretation process for structures on the sea floor, sonar users need to understand the process of visualising seabed projections and depressions, as well as the resolution limitations of the sonar sensors.
一种解释自主水下航行器任务中声纳数据的方法
摘要自主水下航行器(AUV)的图像采集有助于绘制海底物体的地图。然而,很少有研究对自主水下航行器任务中使用侧扫声纳收集的数据进行解释。通过用三维多波束声纳记录海底,可以获得大量的测量点。使用基于遥感图像处理的应用程序来处理所收集的数据。AUV任务(或其他声纳载体)期间收集的数据需要进行预处理,以达到适当的有效性水平。该过程包括信号放大的校正(时变增益或TVG)和声纳图像的几何失真(倾斜距离校正)。应该提到的是,在对海底结构进行解释过程中,声纳用户需要了解海底投影和凹陷的可视化过程,以及声纳传感器的分辨率限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信