基于截面曲线约束变换的船体纵向体积分布CFD优化

IF 2 3区 工程技术 Q2 ENGINEERING, MARINE
M. Kraskowski
{"title":"基于截面曲线约束变换的船体纵向体积分布CFD优化","authors":"M. Kraskowski","doi":"10.2478/pomr-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents a proposal for a formalised approach to hull shape optimisation with respect to total resistance, by fine-tuning longitudinal volume distribution. An algorithm for automated modification of the hull is presented, allowing for varying the sectional area distribution with a negligible influence on the resulting displacement. Computational fluid dynamics (CFD) solver STAR-CCM+ and computer computer-aided design (CAD) software NX were used to search the optimal volume distribution of selected parent shapes, with respect to total resistance. The bow part and the aft part were optimised separately. The resulting resistances of the selected optimal shapes were then verified by means of scale model tests, realised in the towing tank at the Maritime Advanced Research Centre (CTO) S.A. A noticeable gain in total resistance was achieved and confirmed by experimental tests. The proposed approach seems to be a promising method for relatively quick parametric optimisation of the designed hull shapes; it is also applicable for generic CFD optimisation studies.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"29 1","pages":"11 - 20"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CFD Optimisation of the Longitudinal Volume Distribution of a Ship’s Hull by Constrained Transformation of the Sectional Area Curve\",\"authors\":\"M. Kraskowski\",\"doi\":\"10.2478/pomr-2022-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper presents a proposal for a formalised approach to hull shape optimisation with respect to total resistance, by fine-tuning longitudinal volume distribution. An algorithm for automated modification of the hull is presented, allowing for varying the sectional area distribution with a negligible influence on the resulting displacement. Computational fluid dynamics (CFD) solver STAR-CCM+ and computer computer-aided design (CAD) software NX were used to search the optimal volume distribution of selected parent shapes, with respect to total resistance. The bow part and the aft part were optimised separately. The resulting resistances of the selected optimal shapes were then verified by means of scale model tests, realised in the towing tank at the Maritime Advanced Research Centre (CTO) S.A. A noticeable gain in total resistance was achieved and confirmed by experimental tests. The proposed approach seems to be a promising method for relatively quick parametric optimisation of the designed hull shapes; it is also applicable for generic CFD optimisation studies.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"29 1\",\"pages\":\"11 - 20\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0022\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0022","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文提出了一种关于总阻力的船体形状优化的形式化方法,通过微调纵向体积分布。提出了一种船体自动修改算法,允许在对产生的位移影响可忽略不计的情况下改变截面面积分布。计算流体动力学(CFD)求解器STAR-CCM+和计算机辅助设计(CAD)软件NX用于搜索所选母体形状相对于总阻力的最佳体积分布。船头部分和尾部分别进行了优化。然后,通过在美国海事高级研究中心(CTO)的拖曳箱中进行的比例模型试验来验证所选最佳形状的最终阻力。总阻力显著增加,并通过实验试验进行了确认。所提出的方法似乎是一种很有前途的方法,可以相对快速地对设计的船体形状进行参数优化;它也适用于通用CFD优化研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD Optimisation of the Longitudinal Volume Distribution of a Ship’s Hull by Constrained Transformation of the Sectional Area Curve
Abstract The paper presents a proposal for a formalised approach to hull shape optimisation with respect to total resistance, by fine-tuning longitudinal volume distribution. An algorithm for automated modification of the hull is presented, allowing for varying the sectional area distribution with a negligible influence on the resulting displacement. Computational fluid dynamics (CFD) solver STAR-CCM+ and computer computer-aided design (CAD) software NX were used to search the optimal volume distribution of selected parent shapes, with respect to total resistance. The bow part and the aft part were optimised separately. The resulting resistances of the selected optimal shapes were then verified by means of scale model tests, realised in the towing tank at the Maritime Advanced Research Centre (CTO) S.A. A noticeable gain in total resistance was achieved and confirmed by experimental tests. The proposed approach seems to be a promising method for relatively quick parametric optimisation of the designed hull shapes; it is also applicable for generic CFD optimisation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polish Maritime Research
Polish Maritime Research 工程技术-工程:海洋
CiteScore
3.70
自引率
45.00%
发文量
20
审稿时长
>12 weeks
期刊介绍: The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components. All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as: all types of vessels and their equipment, fixed and floating offshore units and their components, autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV). We welcome submissions from these fields in the following technical topics: ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc., structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc., marine equipment: ship and offshore unit power plants: overboarding equipment; etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信