Reports on Mathematical Physics最新文献

筛选
英文 中文
Extensions of Conformal Modules Over Finite Lie Conformal Algebras of Planar Galilean Type 平面伽利略型有限Lie共形布尔上的共形模数扩展
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-10-01 DOI: 10.1016/S0034-4877(24)00077-6
Xiu Han, Dengyin Wang, Chunguang Xia
{"title":"Extensions of Conformal Modules Over Finite Lie Conformal Algebras of Planar Galilean Type","authors":"Xiu Han,&nbsp;Dengyin Wang,&nbsp;Chunguang Xia","doi":"10.1016/S0034-4877(24)00077-6","DOIUrl":"10.1016/S0034-4877(24)00077-6","url":null,"abstract":"<div><div>We classify extensions between finite irreducible conformal modules over Lie conformal algebras <strong>B</strong>ℌ(<em>a, b)</em> of planar Galilean type, where <em>a</em> and <em>b</em> are complex numbers. We find that although finite irreducible conformal modules over <strong>B</strong>ℌ(<em>a</em>, <em>b)</em> are simply conformal modules over its Heisenberg–Virasoro conformal subalgebra, there exist more nontrivial extensions between conformal <strong>B</strong>ℌ(<em>a, b</em>)-modules.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 2","pages":"Pages 219-233"},"PeriodicalIF":1.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Harmonic and Magnetic Fields on The Tangent Bundle with A Ciconia Metric Over An Anti-Parakähler Manifold 在反帕拉克勒曼体上用西科尼娅公设探索切线束上的谐波场和磁场
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-10-01 DOI: 10.1016/S0034-4877(24)00074-0
Nour Elhouda Djaa, Aydin Gezer
{"title":"Exploring Harmonic and Magnetic Fields on The Tangent Bundle with A Ciconia Metric Over An Anti-Parakähler Manifold","authors":"Nour Elhouda Djaa,&nbsp;Aydin Gezer","doi":"10.1016/S0034-4877(24)00074-0","DOIUrl":"10.1016/S0034-4877(24)00074-0","url":null,"abstract":"<div><div>The primary objective of this study is to examine harmonic and generalized magnetic vector fields as mappings from an anti-paraKählerian manifold to its associated tangent bundle, endowed with a ciconia metric. Initially, the conditions under which a vector field is harmonic (or magnetic) concerning a ciconia metric are investigated. Subsequently, the mappings between any given Riemannian manifold and the tangent bundle of an anti-paraKählerian manifold are explored. The paper delves into identifying the circumstances under which vector fields exhibit harmonicity or magnetism within the framework of a ciconia metric. Additionally, it explores the relationships between specific harmonic and magnetic vector fields, particularly emphasizing their behaviour under conformal transformations of metrics.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 2","pages":"Pages 149-173"},"PeriodicalIF":1.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Localization of Eigenfunctions of The Magnetic Laplacian 论磁性拉普拉卡矩特征函数的定位
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-10-01 DOI: 10.1016/S0034-4877(24)00078-8
Jeffrey S. Ovall, Hadrian Quan, Robyn Reid, Stefan Steinerberger
{"title":"On Localization of Eigenfunctions of The Magnetic Laplacian","authors":"Jeffrey S. Ovall,&nbsp;Hadrian Quan,&nbsp;Robyn Reid,&nbsp;Stefan Steinerberger","doi":"10.1016/S0034-4877(24)00078-8","DOIUrl":"10.1016/S0034-4877(24)00078-8","url":null,"abstract":"<div><div>Let Ω ⊂ ℝ<em><sup>d</sup></em> and consider the magnetic Laplace operator given by <em>H</em>(<em>A</em>) = (–<em>i</em>∇ – <em>A</em>(<em>x</em>))<sup>2</sup>, where <em>A</em> : Ω <em>→</em> ℝ<em><sup>d</sup></em>, subject to Dirichlet boundary conditions. For certain vector fields <em>A</em>, this operator can have eigenfunctions, <em>H</em>(<em>A</em>)ψ = λψ, that are highly localized in a small region of Ω. The main goal of this paper is to show that if |ψ| assumes its maximum at <em>x</em><sub>0</sub> ∈ Ω, then <em>A</em> behaves 'almost' like a conservative vector field in a \u0000\t\t\t\t<span><math><mrow><mn>1</mn><mo>/</mo><msqrt><mi>λ</mi></msqrt></mrow></math></span>-neighborhood of <em>x</em><sub>0</sub> in a precise sense. In particular, we expect localization in regions where |curl <em>A</em>| is small. The result is illustrated with numerical examples.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 2","pages":"Pages 235-257"},"PeriodicalIF":1.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact Solution to Bratu Second Order Differential Equation 布拉图二阶微分方程的精确解
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-10-01 DOI: 10.1016/S0034-4877(24)00075-2
Adam R. Szewczyk
{"title":"Exact Solution to Bratu Second Order Differential Equation","authors":"Adam R. Szewczyk","doi":"10.1016/S0034-4877(24)00075-2","DOIUrl":"10.1016/S0034-4877(24)00075-2","url":null,"abstract":"<div><div>This paper deals with the temperature profile of a simple combustion and presents the alternative exact formulas for the temperature profile of the planar vessel. The differential equation that describes this system is referred as a Bratu equation or Poisson's equation in one-dimensional steady state case. In this present study, new solutions with general boundary conditions are developed. The results are compared with numerical solutions using Maxima, a computer algebra system program capable of numerical and symbolic computation. The new solutions yield formula that may provide a valuable information about relationship between terms, variables and coefficients which can be useful for theoretical physics.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 2","pages":"Pages 175-188"},"PeriodicalIF":1.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Buschman–fox H-Function in Nuclear Physics 布施曼-福克斯 H 函数在核物理中的应用
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-10-01 DOI: 10.1016/S0034-4877(24)00079-X
Ashik A. Kabeer, Dilip Kumar
{"title":"Applications of Buschman–fox H-Function in Nuclear Physics","authors":"Ashik A. Kabeer,&nbsp;Dilip Kumar","doi":"10.1016/S0034-4877(24)00079-X","DOIUrl":"10.1016/S0034-4877(24)00079-X","url":null,"abstract":"<div><div>The paper is devoted to presenting a novel closed-form representation of the resonant thermonuclear functions and the nonrelativistic Voigt function, which are essential tools in nuclear physics. Understanding thermonuclear fusion reaction rates within solar analogs is crucial for understanding stellar evolution and energy production mechanisms. Initially, this paper focuses on evaluating fusion reaction rates, particularly emphasizing resonant reactions, which play pivotal roles in stellar evolution phases. A key challenge lies in solving reaction rate integrals in closed form. The Buschman–Fox <em>H</em>-function of two variables is employed to address this issue. Conventionally, it is assumed that the plasma particles' velocity follows the Maxwell–Boltzmann distribution. However, it is acknowledged that particles may deviate from this assumed equilibrium state in actual scenarios, leading to nonequilibrium situations. The study also aims to address these nonequilibrium situations by utilizing appropriate velocity models from the existing literature. Utilizing the Mellin transform technique, we achieve the closed-form representation of the resonant reaction rate integral. Furthermore, we address the nonrelativistic Voigt profile and, in particular, Voigt function. The Voigt profile, resulting from the convolution of Gaussian and Lorentzian distributions, effectively captures the intricate shapes of spectral lines encountered in spectroscopy. Apart from its significance in spectroscopy, the Voigt function finds application in various areas such as plasma nuclear studies, acoustics, and radiation transfer. Many approximations of the Voigt function can be found in the literature, yet currently, there is no existing closed-form expression. This paper also sets out to fill this gap by deriving the exact closed-form expressions for the Voigt function and its conjugate in terms of Buschman–Fox <em>H</em>-function, employing the Mellin convolution theorem. This paper marks the first instance in the literature where the applications of Buschman Fox's <em>H</em>-function has been documented.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 2","pages":"Pages 259-278"},"PeriodicalIF":1.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonisospectral equations from the Cauchy matrix approach 从考奇矩阵方法看非谱方程
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-08-01 DOI: 10.1016/S0034-4877(24)00055-7
Alemu Yilma Tefera, Shangshuai Li, Da-jun Zhang
{"title":"Nonisospectral equations from the Cauchy matrix approach","authors":"Alemu Yilma Tefera,&nbsp;Shangshuai Li,&nbsp;Da-jun Zhang","doi":"10.1016/S0034-4877(24)00055-7","DOIUrl":"10.1016/S0034-4877(24)00055-7","url":null,"abstract":"<div><div>The Cauchy matrix approach is developed to construct explicit solutions for some nonisospectral equations, including the nonisospectral Korteweg–de Vries (KdV) equation, the nonisospectral modified KdV equation, and the nonisospectral sine-Gordon equation. By means of a Sylvester equation, a set of scalar master functions {<em>S</em><sup>(<em>i,j</em>)</sup>} is defined. We show how nonisospectral dispersion relations are introduced such that the evolutions of {<em>S</em><sup>(<em>i,j</em>)</sup>} can be derived. Some identities of {<em>S</em><sup>(<em>i,j</em>)</sup>} are employed in verifying solutions. Some explicit one-soliton and two-soliton solutions are illustrated together with analysis of their dynamics.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 1","pages":"Pages 47-72"},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Certain advancements in multidimensional q-hermite polynomials 多维q-hermite多项式的若干进展
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-08-01 DOI: 10.1016/S0034-4877(24)00059-4
Shahid Ahmad Wani, Mumtaz Riyasat, Subuhi Khan, William Ramírez
{"title":"Certain advancements in multidimensional q-hermite polynomials","authors":"Shahid Ahmad Wani,&nbsp;Mumtaz Riyasat,&nbsp;Subuhi Khan,&nbsp;William Ramírez","doi":"10.1016/S0034-4877(24)00059-4","DOIUrl":"10.1016/S0034-4877(24)00059-4","url":null,"abstract":"<div><div>In the realm of specialized functions, the allure of <em>q</em>-calculus beckons to many scholars, captivating them with its prowess in shaping models of quantum computing, noncommutative probability, combinatorics, functional analysis, mathematical physics, approximation theory, and beyond. This study explores a new idea called the multidimensional <em>q</em>-Hermite polynomials, using different <em>q</em>-calculus techniques. Numerous properties and novel findings regarding these polynomials are derived, encompassing their generating function, series representations, recurrence relations, <em>q</em>-differential formula, and operational principles. Further, we proved that these polynomials are quasi-monomial in <em>q</em>-aspect. As the applications, these findings are subsequently employed to address connection between the multidimensional <em>q</em>-Hermite polynomials and the two-variable <em>q</em>-Legendre polynomials for the first time. Various characterizations are examined, as well the graphical representations of the two-variable <em>q</em>-Legendre polynomials are provided by the surface plots and graphs of distribution of zeros for the <em>q</em>-Legendre polynomials with some specific set of parameters are shown using Mathematica. Our investigations shed light on the intricate nature of these polynomials, elucidating their behaviour and facilitating deeper understanding within the realm of <em>q</em>-calculus.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 1","pages":"Pages 117-141"},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New solutions of the lattice Kadomtsev–Petviashvili system associated with an elliptic curve 与椭圆曲线相关的卡多姆采夫-彼得维亚什维利晶格系统的新解
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-08-01 DOI: 10.1016/S0034-4877(24)00053-3
Ying-ying Sun , Xinyi Wang, Da-jun Zhang
{"title":"New solutions of the lattice Kadomtsev–Petviashvili system associated with an elliptic curve","authors":"Ying-ying Sun ,&nbsp;Xinyi Wang,&nbsp;Da-jun Zhang","doi":"10.1016/S0034-4877(24)00053-3","DOIUrl":"10.1016/S0034-4877(24)00053-3","url":null,"abstract":"<div><div>A generalization of the lattice Kadomtsev–Petviashvili system associated with an elliptic curve, that is referred to as an elliptic integrable system, has been revisited by means of the Cauchy matrix scheme. Various types of explicit solutions are obtained, some of which offer new insights of both mathematical and physical significance. The construction of exact solutions to the elliptic lattice Kadomtsev–Petviashvili system is closely connected to that of a special Sylvester-type matrix equation.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 1","pages":"Pages 11-33"},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weakly periodic gibbs measures for the HC model with a countable set of spin values 具有可数自旋值集的 HC 模型的弱周期吉布斯量度
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-08-01 DOI: 10.1016/S0034-4877(24)00057-0
Muhtorjon Makhammadaliev
{"title":"Weakly periodic gibbs measures for the HC model with a countable set of spin values","authors":"Muhtorjon Makhammadaliev","doi":"10.1016/S0034-4877(24)00057-0","DOIUrl":"10.1016/S0034-4877(24)00057-0","url":null,"abstract":"<div><div>In this paper, we study the weakly periodic (nonperiodic) Gibbs measures for the Hard Core (HC) model with a countable set ℤ of spin values and with a countable set of parameters <em>λ<sub>i</sub> &gt;</em> 0, <em>i</em> ∈ ℤ, on a Cayley tree of order <em>k</em> ≥ 2. For the considered model in the case ∑<em><sub>i</sub></em> λ<em><sub>i</sub></em> &lt; +∞, a complete description of weakly periodic Gibbs measures is obtained for any normal divisor of index two and in the case ∑<em><sub>i</sub></em>; λ<em><sub>i</sub></em> = +∞, it is shown that there is no weakly periodic Gibbs measure. Moreover, in the case of a normal divisor of index four the uniqueness conditions for weakly periodic Gibbs measures are found. Further, under certain conditions an exact critical value is found that ensures the existence of weakly periodic Gibbs measures.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 1","pages":"Pages 83-103"},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of quadratic invariants for time-dependent systems in complex phase space using Struckmeier and Riedel approach 用斯特拉克迈尔和里德尔方法构建复相空间时变系统的二次不变量
IF 1 4区 物理与天体物理
Reports on Mathematical Physics Pub Date : 2024-08-01 DOI: 10.1016/S0034-4877(24)00052-1
Vipin Kumar, S.B. Bhardwaj, Ram Mehar Singh, Shalini Gupta, Fakir Chand
{"title":"Construction of quadratic invariants for time-dependent systems in complex phase space using Struckmeier and Riedel approach","authors":"Vipin Kumar,&nbsp;S.B. Bhardwaj,&nbsp;Ram Mehar Singh,&nbsp;Shalini Gupta,&nbsp;Fakir Chand","doi":"10.1016/S0034-4877(24)00052-1","DOIUrl":"10.1016/S0034-4877(24)00052-1","url":null,"abstract":"<div><div>In this paper, we deal with the construction of quadratic invariants in a complex phase space under the transformation <em>z</em> = (<em>x</em> + <em>iy</em>) and\u0000<span><math><mrow><mover><mi>z</mi><mo>¯</mo></mover><mo>=</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>-</mo><mi>i</mi><mi>y</mi></mrow><mo>)</mo></mrow></mrow></math></span> for various time-dependent systems. For this purpose, Struckmeier and Riedel (SR) approach [<span><span>1</span></span>, <span><span>2</span></span>] is used. The constructed invariants include an unknown function <em>f</em><sub>2</sub>(<em>t</em>) that is a solution of a third-order differential equation and its coefficients can be determined by the trajectories of the particle. The invariants play an important role in the study of a dynamical system, to access the accuracy in numerical simulations and to investigate the classical and quantum integrability of a system.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 1","pages":"Pages 1-10"},"PeriodicalIF":1.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信