Exact Solution to Bratu Second Order Differential Equation

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Adam R. Szewczyk
{"title":"Exact Solution to Bratu Second Order Differential Equation","authors":"Adam R. Szewczyk","doi":"10.1016/S0034-4877(24)00075-2","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the temperature profile of a simple combustion and presents the alternative exact formulas for the temperature profile of the planar vessel. The differential equation that describes this system is referred as a Bratu equation or Poisson's equation in one-dimensional steady state case. In this present study, new solutions with general boundary conditions are developed. The results are compared with numerical solutions using Maxima, a computer algebra system program capable of numerical and symbolic computation. The new solutions yield formula that may provide a valuable information about relationship between terms, variables and coefficients which can be useful for theoretical physics.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":"94 2","pages":"Pages 175-188"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000752","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the temperature profile of a simple combustion and presents the alternative exact formulas for the temperature profile of the planar vessel. The differential equation that describes this system is referred as a Bratu equation or Poisson's equation in one-dimensional steady state case. In this present study, new solutions with general boundary conditions are developed. The results are compared with numerical solutions using Maxima, a computer algebra system program capable of numerical and symbolic computation. The new solutions yield formula that may provide a valuable information about relationship between terms, variables and coefficients which can be useful for theoretical physics.
布拉图二阶微分方程的精确解
本文讨论了简单燃烧的温度曲线,并提出了平面容器温度曲线的其他精确公式。描述该系统的微分方程被称为布拉图方程或一维稳态泊松方程。本研究开发了具有一般边界条件的新解决方案。研究结果与使用 Maxima(一种能够进行数值和符号计算的计算机代数系统程序)的数值解进行了比较。新的解法得出的公式可以提供关于项、变量和系数之间关系的有价值信息,这对理论物理非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信