Construction of quadratic invariants for time-dependent systems in complex phase space using Struckmeier and Riedel approach

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Vipin Kumar, S.B. Bhardwaj, Ram Mehar Singh, Shalini Gupta, Fakir Chand
{"title":"Construction of quadratic invariants for time-dependent systems in complex phase space using Struckmeier and Riedel approach","authors":"Vipin Kumar,&nbsp;S.B. Bhardwaj,&nbsp;Ram Mehar Singh,&nbsp;Shalini Gupta,&nbsp;Fakir Chand","doi":"10.1016/S0034-4877(24)00052-1","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we deal with the construction of quadratic invariants in a complex phase space under the transformation <em>z</em> = (<em>x</em> + <em>iy</em>) and\n<span><math><mrow><mover><mi>z</mi><mo>¯</mo></mover><mo>=</mo><mrow><mo>(</mo><mrow><mi>x</mi><mo>-</mo><mi>i</mi><mi>y</mi></mrow><mo>)</mo></mrow></mrow></math></span> for various time-dependent systems. For this purpose, Struckmeier and Riedel (SR) approach [<span><span>1</span></span>, <span><span>2</span></span>] is used. The constructed invariants include an unknown function <em>f</em><sub>2</sub>(<em>t</em>) that is a solution of a third-order differential equation and its coefficients can be determined by the trajectories of the particle. The invariants play an important role in the study of a dynamical system, to access the accuracy in numerical simulations and to investigate the classical and quantum integrability of a system.</div></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487724000521","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we deal with the construction of quadratic invariants in a complex phase space under the transformation z = (x + iy) and z¯=(x-iy) for various time-dependent systems. For this purpose, Struckmeier and Riedel (SR) approach [1, 2] is used. The constructed invariants include an unknown function f2(t) that is a solution of a third-order differential equation and its coefficients can be determined by the trajectories of the particle. The invariants play an important role in the study of a dynamical system, to access the accuracy in numerical simulations and to investigate the classical and quantum integrability of a system.
用斯特拉克迈尔和里德尔方法构建复相空间时变系统的二次不变量
在本文中,我们讨论了在 z = (x + iy) 和 z¯=(x-iy) 变换下,为各种时变系统构建复相空间二次不变量的问题。为此,我们采用了 Struckmeier 和 Riedel(SR)方法[1, 2]。构建的不变式包括一个未知函数 f2(t),它是一个三阶微分方程的解,其系数可由粒子的轨迹确定。不变量在研究动态系统、获得数值模拟的准确性以及研究系统的经典和量子可积分性方面发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reports on Mathematical Physics
Reports on Mathematical Physics 物理-物理:数学物理
CiteScore
1.80
自引率
0.00%
发文量
40
审稿时长
6 months
期刊介绍: Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信