{"title":"Medical applications of isotope metallomics","authors":"F. Albarède, P. Télouk, V. Balter","doi":"10.2138/RMG.2017.82.20","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.20","url":null,"abstract":"One may wonder how a paper discussing medical applications of metal isotopes got lost in a review journal dedicated to mineralogy and geochemistry. The justifications are multiple. First, the coming of age of metal isotopic analysis in the mid ‘90s is largely due to the analytical creativity of the geochemical community and to corporate technical skills allowing the rise of new technologies. Second, many concepts, which can be imbedded in quantitative models testable from their predictions, are common to geochemistry, biochemistry, physiology, and nutrition: a cell, with its organelles, a body with its organ and body fluids, are systems liable to treatments similar to those used to model a lake, the ocean–atmosphere, and the mantle–crust systems. Of course, time scales and length scales differ, the complexity of biology is immense compared to that of the mineral world. Geological systems lack the hallmarks of life, genes and cell signaling. In spite of the overall complexity of the biological systems, pathways, kinetics, and chemical dynamics are better understood than their counterpart in earth sciences. Like in many fields of engineering, comparing the records of inputs and outputs is a powerful tool to identify the internal ‘knobs’ controlling a given system and learn how to tweak them. Third, although some of the most sophisticated techniques such as ab initio calculations of molecular configurations, energetics, and isotopic properties are still limited to molecules with less than a few dozens of atoms, the time is getting closer to when simulations of large molecules will become available for application to ‘real’ proteins with large molecular weights. The present article reviews some of the basic features of what is now known as Metallomics and the preliminary applications of stable isotopes to some medical cases, a discipline for which we suggest the simple term of Isotope Metallomics . …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85440582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silicon Isotope Geochemistry","authors":"F. Poitrasson","doi":"10.2138/RMG.2017.82.8","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.8","url":null,"abstract":"In contrast to many other stable isotopes of the elements discussed in this book, those of silicon are not strictly speaking “Non-Traditional Stable Isotopes” because they have been studied for more than 60 years. After the pioneering works of Reynolds and Verhoogen (1953) and Allenby (1954), a steady increase in silicon isotope studies of geological materials has led to a substantial corpus of data. These data were compiled by Ding et al. (1996) alongside new measurements that, collectively, included over a thousand samples of rocks, minerals, waters and biological materials. Most of these data were produced using the well established method of gas source mass spectrometry after sample decomposition and silicon purification via fluorination techniques. As for many non-traditional stable isotopes, silicon isotope research has flourished with the advent of second generation of multicollector plasma source mass spectrometers (MC–ICP–MS). These instruments eliminated the requirement of hazardous gaseous fluorine sample preparation methods while permitting improved analytical precision in both wet plasma (De La Rocha 2002) and in dry plasma (Cardinal et al. 2003). Subsequent analytical developments involving high mass resolution MC–ICP–MS combined with improved silicon purification methods (Georg et al. 2006) made this analytical technique more robust and precise enough to study even the subtle silicon isotope variations produced during high temperature geological processes (Savage et al. 2014). Silicon is the fourteenth element of the Periodic Table. Its atomic mass was precisely determined to be 28.08553 ± 0.00039 in atomic mass units (a.m.u.) on a pure silicon reference material (NIST SRM–990, Barnes et al. 1975). This 95% confidence limit error includes the overall natural isotopic variation range for 30Si/28Si known by the time, estimated to be about 5‰ from the analysis of biological, meteoritic and terrestrial materials (Tilles 1961). As detailed below, the current database suggests …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81511145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equilibrium Fractionation of Non-traditional Stable Isotopes: an Experimental Perspective","authors":"A. Shahar, S. Elardo, C. Macris","doi":"10.2138/RMG.2017.82.3","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.3","url":null,"abstract":"In 1986, O’Neil wrote a Reviews in Mineralogy chapter on experimental aspects of isotopic fractionation. He noted that in order to fully understand and interpret the natural variations of light stable isotope ratios in nature, it was essential to know the magnitude and temperature dependence of the isotopic fractionation factor amongst minerals and fluids. At that time it was difficult to imagine that this would become true for the heavier, so called non-traditional stable isotopes, as well. Since the advent of the multiple collector inductively coupled plasma-source mass spectrometer (MC–ICP–MS), natural variations of stable isotope ratios have been found for almost any polyisotopic element measured. Although it has been known that as temperature and mass increase, isotope fractionation decreases very quickly, the MC–ICP–MS has revolutionized the ability of a geochemist to measure very small differences in isotope ratios. It was then that the field of experimental non-traditional stable isotope geochemistry was born. As O’Neil (1986) pointed out there are three ways to obtain isotopic fractionation factors: theoretical calculations, measurements of natural samples with well-known formation conditions, and laboratory calibration studies. This chapter is devoted to explaining the techniques involved with laboratory experiments designed to measure equilibrium isotope fractionation factors as well as the best practices that have been learned. Although experimental petrology has been around for a long time and basic experimental methods have been well-refined, there are additional considerations that must be taken into account when the goal is to measure isotopic compositions at the end of the experiment. It has been only about ten years since these initial studies were published, but much has been learned in that time about how best to conduct experiments aimed at determining equilibrium fractionation factors. We will not focus on the scientific results that have been determined by such experiments, as each …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74463927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation and Application of Thallium Isotope Fractionation","authors":"S. Nielsen, M. Rehkämper, J. Prytulak","doi":"10.2138/RMG.2017.82.18","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.18","url":null,"abstract":"This contribution summarizes the current state of understanding and recent advances made in the field of stable thallium (Tl) isotope geochemistry. High precision measurements of Tl isotope compositions were developed in the late 1990s with the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS) and subsequent studies revealed that Tl, despite the small relative mass difference of the two isotopes, exhibits substantial stable isotope fractionation, especially in the marine environment. The most fractionated reservoirs identified are ferromanganese sediments with ɛ 205 Tl ≈ +15 and low temperature altered oceanic crust with ɛ 205 Tl ≈ −20. The total isotopic variability of more than 35 ɛ 205 Tl-units hence exceeds the current analytical reproducibility of the measurement technique by more than a factor of 70. This isotopic variation can be explained by invoking a combination of conventional mass dependent equilibrium isotope effects and nuclear field shift isotope fractionation, but the specific mechanisms are still largely unaccounted for. Thallium isotopes have been applied to investigate paleoceanographic processes in the Cenozoic and there is evidence to suggest that Tl isotopes may be utilized as a monitor of the marine manganese oxide burial flux over million year time scales. In addition, Tl isotopes can be used to calculate the magnitude of hydrothermal fluid circulation through ocean crust. It has also been shown that the subduction of marine ferromanganese sediments can be detected with Tl isotopes in lavas erupted in subduction zone settings as well as in ocean island basalts. Meteorite samples display Tl isotope variations that exceed the terrestrial range with a total variability of about 50 ɛ 205 Tl. The large isotopic diversity, however, is generated by both stable Tl isotope fractionations, which reflect the highly volatile and labile cosmochemical nature of the element, and radiogenic decay of extinct 205 Pb to 205 Tl with a half-life of about 15 Ma. The difficulty of deconvolving these two sources of isotopic variability restricts the utility of both the 205 Pb– 205 Tl chronometer and the Tl stable isotope system to inform on early solar system processes.","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84676694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selenium Isotopes as a Biogeochemical Proxy in Deep Time","authors":"E. Stüeken","doi":"10.2138/RMG.2017.82.15","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.15","url":null,"abstract":"Funding during the compilation of this manuscript was provided by the NASA postdoctoral program.","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81469425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Isotope Geochemistry of Zinc and Copper","authors":"F. Moynier, D. Vance, T. Fujii, P. Savage","doi":"10.2138/RMG.2017.82.13","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.13","url":null,"abstract":"Copper, a native metal found in ores, is the principal metal in bronze and brass. It is a reddish metal with a density of 8920 kg m−3. All of copper’s compounds tend to be brightly colored: for example, copper in hemocyanin imparts a blue color to blood of mollusks and crustaceans. Copper has three oxidation states, with electronic configurations of Cu([Ar]3 d 104 s 1), Cu+([Ar]3 d 10), and Cu2+([Ar]3 d 9). Cu does not react with aqueous hydrochloric or sulfuric acids, but is soluble in concentrated nitric acid due to its lesser tendency to be oxidized. Cu(I) exists as the colorless cuprous ion, Cu+. Cu(II) is found as the sky-blue cupric ion, Cu2+. The Cu+ ion is unstable, and tends to disproportionate to Cu and Cu2+. Nevertheless, Cu(I) forms compounds such as Cu2O. Cu(I) bonds more readily to carbon than Cu(II), hence Cu(I) has an extensive chemistry with organic compounds. In aqueous solutions, Cu2+ ion occurs as an aquacomplex. There is no clearly predominant structure among the four-, five-, and six-fold coordinated Cu(II) species (Chaboy et al. 2006). Hydrated Cu(II) ion has been represented as the hexaaqua complex Cu(H2O)62+, which shows the Jahn–Teller distortion effect (Sherman 2001; Bersuker 2006), whereby the two Cu–O distances of the vertical axial bond (Cu–Oax) are longer than four Cu–O distances in the equatorial plane (Cu–Oeq). The Jahn–Teller effect lowers the symmetry of Cu(H2O)62+ from octahedral Th to D2h. The sixfold coordination of hydrated Cu(II) species is questioned by a finding of fivefold coordination (Pasquarello et al. 2001; Chaboy et al. 2006; Little et al. 2014b …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84746288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chromium Isotope Geochemistry","authors":"L. Qin, Xiangli Wang","doi":"10.2138/RMG.2017.82.10","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.10","url":null,"abstract":"Chromium consists of four stable isotopes (50Cr, 52Cr, 53Cr and 54Cr) with natural abundances of 4.35%, 83.79%, 9.50% and 2.36%, respectively (Rossman and Taylor 1998). Among these four isotopes, 50Cr, 52Cr and 54Cr are non-radiogenic, whereas 53Cr is a radiogenic product of the extinct nuclide 53Mn, which has a half-life of 3.7 Myr (Honda and Imamura 1971). Chromium isotope systems have a wide range of applications in geochemistry and cosmochemistry. They have been used to study early solar system processes (e.g., Rotaru et al. 1992); the oxidation/reduction (redox) potential of underground systems, which governs the transport and fate of many contaminants (e.g., Ellis et al. 2002); and more recently, the redox evolution of Earth’s early ocean-atmosphere system, which is intimately linked to the evolution of life (Frei et al. 2009; Crowe et al. 2013; Planavsky et al. 2014; Cole et al. 2016). ### Chemical properties of Cr Chromium is redox-sensitive. In Earth’s near-surface environments, Cr has two main valence states, +3 and + 6, which are expressed as Cr(III) and Cr(VI), respectively. The valence state of Cr is controlled by the prevailing redox potential (Eh) and pH conditions (Fig. 1). Cr(VI) is always bound with O2− to form the oxyanion species CrO42− (chromate), HCrO4− (bichromate), and Cr2O72−(dichromate), all of which are water-soluble. In contrast, Cr3+ usually forms oxyhydroxides or oxides, which are insoluble and immobile in the natural pH range. During oxidative weathering, Cr(III) in minerals can be oxidized by O2 to Cr(VI), a process that is catalyzed by manganese oxides (Fendorf and Zasoski 1992; Economou-Eliopoulos et al. 2014). The Cr(VI) migrates to rivers and eventually to the ocean. In the modern ocean, Cr occurs as both Cr(VI) and …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73430398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnesium Isotope Geochemistry","authors":"F. Teng","doi":"10.2138/RMG.2017.82.7","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.7","url":null,"abstract":"Magnesium (Mg) has an atomic number of 12 and belongs to the alkaline earth element (Group II) of the Periodic Table. The pure Mg is a silvery white metal and has a melting point of 650 °C and boiling point of 1090 °C at 1 standard atmosphere (Lide 1993–1994). The electronic configuration of Mg is [Ne]3s2, with low ionization energies, which makes Mg ionic in character with a common valance state of 2+ and a typical ionic radius of 0.72 A (Shannon 1976). Magnesium is a major element and widely distributed in the silicate Earth, hydrosphere and biosphere (Fig. 1a). It is the fourth most abundant element in the Earth (after O, Fe and Si, MgO = 25.5 wt%) (McDonough and Sun 1995), the fifth most abundant element in the bulk continental crust (MgO = 4.66 wt%) (Rudnick and Gao 2003) and the second most abundant cation in seawater (after Na, Mg = 0.128 wt%) (Pilson 2013). Nonetheless, the mantle has > 99.9% of Mg in the Earth because of its high MgO content (37.8 wt%, McDonough and Sun 1995) and mass fraction. The high abundance of Mg in the silicate Earth makes it a major constituent of minerals (e.g., olivine, pyroxene, garnet, amphibole, mica, spinel, carbonate, sulfate, and clay minerals) in igneous, metamorphic and sedimentary rocks. Magnesium has three stable isotopes, with mass numbers of 24, 25 and 26, and typical abundances of 78.99%, 10.00% and 11.01%, respectively (Berglund and Wieser 2011) (Fig. 1b), and a standard atomic weight of 24.305 (CIAAW 2015). Because of the limitations in the mass spectrometry, many previous Mg isotopic studies have concentrated on either mass independent isotope anomalies to look for the radiogenic 26Mg produced by the decay of short-lived 26Al (Gray and Compston 1974; Lee and …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77076888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Developments in Mercury Stable Isotope Analysis","authors":"J. Blum, Marcus W. Johnson","doi":"10.2138/RMG.2017.82.17","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.17","url":null,"abstract":"The first Reviews in Mineralogy volume on the Geochemistry of Non-Traditional Stable Isotopes was compiled before it was appropriate to include a chapter on mercury (Hg) stable isotope geochemistry. At that time there were only a few papers on this new topic (Jackson 2001; Lauretta et al. 2001; Hintelmann and Lu 2003), and there were still some important analytical issues that needed to be resolved. But the field has come a long way in a decade. Now we have a different problem; at our last count there were well over 100 publications utilizing mercury stable isotopes and it is becoming very difficult to synthesize this vast amount of exciting and rapidly developing research. Experimental studies have expanded our knowledge of the mechanisms of mercury isotope fractionation and applications of mercury isotope measurements have touched virtually every area of research in mercury biogeochemistry. There have been a number of previous reviews of the mercury stable isotope literature as it has developed (Ridley and Stetson 2006; Bergquist and Blum 2009; Yin et al. 2010; Blum 2011; Hintelmann 2012; Blum et al. 2014). It is our view that the field has become too large to comprehensively review the entire literature on mercury stable isotopes. Ten years ago Hg isotope researchers were just beginning to explore the boundaries of natural Hg isotope variation and the mechanisms that cause this variation in the environment. At that time large and relatively easily measured isotope signals were of great interest and mercury isotope researchers were beginning to develop theories to explain mass dependent isotope fractionation (MDF) and mass independent isotope fractionation of the odd mass-numbered isotopes of mercury (odd-MIF). More recently researchers have discovered a wider range of types of isotopic variability (even-MIF), some of which are subtle and …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91203301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Iron Isotope Systematics","authors":"N. Dauphas, S. John, O. Rouxel","doi":"10.2138/RMG.2017.82.11","DOIUrl":"https://doi.org/10.2138/RMG.2017.82.11","url":null,"abstract":"Iron is a ubiquitous element with a rich (i.e., complex) chemical behavior. It possesses three oxidation states, metallic iron (Fe), ferrous iron (Fe2+) and ferric iron (Fe3+). The distribution of these oxidation states is markedly stratified in the Earth.","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83746073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}