{"title":"Musical training generalises across modalities and reveals efficient and adaptive mechanisms for judging temporal intervals","authors":"David Aagten-Murphy, G. Cappagli, D. Burr","doi":"10.1163/187847612X646361","DOIUrl":"https://doi.org/10.1163/187847612X646361","url":null,"abstract":"Expert musicians are able to accurately and consistently time their actions during a musical performance. We investigated how musical expertise influences the ability to reproduce auditory intervals and how this generalises to vision in a ‘ready-set-go’ paradigm. Subjects reproduced time intervals drawn from distributions varying in total length (176, 352 or 704 ms) or in the number of discrete intervals within the total length (3, 5, 11 or 21 discrete intervals). Overall musicians performed more veridically than non-musicians, and all subjects reproduced auditory-defined intervals more accurately than visually-defined intervals. However non-musicians, particularly with visual intervals, consistently exhibited a substantial and systematic regression towards the mean of the interval. When subjects judged intervals from distributions of longer total length they tended to exhibit more regression towards the mean, while the ability to discriminate between discrete intervals within the distribution had little influence on subject error. These results are consistent with a Bayesian model which minimizes reproduction errors by incorporating a central tendency prior weighted by the subject’s own temporal precision relative to the current intervals distribution (Cicchini et al., 2012; Jazayeri and Shadlen, 2010). Finally a strong correlation was observed between all durations of formal musical training and total reproduction errors in both modalities (accounting for 30% of the variance). Taken together these results demonstrate that formal musical training improves temporal reproduction, and that this improvement transfers from audition to vision. They further demonstrate the flexibility of sensorimotor mechanisms in adapting to different task conditions to minimise temporal estimation errors.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"13-13"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X646361","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64426316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abstracts from the 13th International Multisensory Research Forum, University of Oxford, June 19th–22nd 2012","authors":"V. Harrar, G. Meyer, C. Spence","doi":"10.1163/187847612X646235","DOIUrl":"https://doi.org/10.1163/187847612X646235","url":null,"abstract":"","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X646235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64426503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Vandenbroucke, G. Crombez, D. V. Ryckeghem, V. Harrar, L. Goubert, C. Spence, Wouter Durnez, S. Damme
{"title":"Observing social stimuli influences detection of subtle somatic sensations differently for pain synaesthetes and controls","authors":"S. Vandenbroucke, G. Crombez, D. V. Ryckeghem, V. Harrar, L. Goubert, C. Spence, Wouter Durnez, S. Damme","doi":"10.1163/187847612X646415","DOIUrl":"https://doi.org/10.1163/187847612X646415","url":null,"abstract":"Introduction: There is preliminary evidence that viewing touch or pain can modulate the experience of tactile stimulation. The aim of this study was to develop an experimental paradigm to investigate whether the observation of needle pricks to another person’s hand facilitates the detection of subtle somatic sensations. Furthermore, differences between control persons and persons reporting synaesthesia for pain (i.e., experiencing observed pain as if it is their own pain) will be examined. Method: Synaesthetes ( n = 15 ) and controls ( n = 20 ) were presented a series of videos showing left or right hands being pricked and control videos (e.g., a sponge being pricked), whilst receiving occasionally subtle threshold sensations themselves on the hand in the same spatial location (congruent trials) or in the opposite location (incongruent trials) as the visual stimuli. Participants were asked to detect the sensory stimulus. Signal detection theory was used to compare whether sensitivity was different for both groups and both categories of visual stimuli. Results: Overall, perceptual sensitivity (d′) was significantly higher when the visual stimuli involved a painful situation (e.g., needle pricking another’s hand) compared to the control videos, and was significantly lower in synaesthetes compared to control participants. When no sensory stimulus was administered, participants reported significantly more illusory sensations when a painful situation was depicted compared to a non-painful situation. Discussion: This study suggests that the detection of somatic sensations can be facilitated or inhibited by observing visual stimuli. Synaesthetes were generally less sensitive, suggesting that they experience more difficulties in disentangling somatic and visual stimuli.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"162 3 1","pages":"19-19"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X646415","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64426636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complexity of sensorimotor transformations alters hand perception","authors":"C. Sutter, Stefan Ladwig, S. Sülzenbrück","doi":"10.1163/187847612X646505","DOIUrl":"https://doi.org/10.1163/187847612X646505","url":null,"abstract":"When using tools effects in body space and distant space often do not correspond or are even in conflict. The ideomotor principle holds that actors select, initiate and execute movements by activating the anticipatory codes of the movements’ sensory effects (Greenwald, 1970; James, 1890). These may be representations of body-related effects and/or representations of more distal effects. Previous studies have demonstrated that distant action effects dominate action control, while body-related effects are attenuated (e.g., Musseler and Sutter, 2009). In two experiments, participants performed closed-loop controlled movements on a covered digitizer tablet to control a cursor on a monitor. Different gains perturbed the relation between hand and cursor amplitude, so that the hand amplitude varied and the cursor amplitude remained constant, and vice versa. Within a block the location of amplitude perturbation randomly varied (low predictability) or not (high predictability). In Experiment 1 both trajectories of hand and cursor followed the same linear path, in Experiment 2 a linear hand trajectory produced a curved cursor trajectory on the monitor. When participants were asked to evaluate their hand movement, they were extremely uncertain about their trajectories. Both, predictability of amplitude perturbation and shape of cursor trajectory modulated the awareness of one’s own hand movements. We will discuss whether the low awareness of proximal action effects originates from an insufficient quality of the humans’ tactile and proprioceptive system or from an insufficient spatial reconstruction of this information in memory.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"28-28"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X646505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64426864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developmental processes in audiovisual object recognition and object location","authors":"Maeve M. Barrett, F. Newell","doi":"10.1163/187847612X646604","DOIUrl":"https://doi.org/10.1163/187847612X646604","url":null,"abstract":"This study investigated whether performance in recognising and locating target objects benefited from the simultaneous presentation of a crossmodal cue. Furthermore, we examined whether these ‘what’ and ‘where’ tasks were affected by developmental processes by testing across different age groups. Using the same set of stimuli, participants conducted either an object recognition task, or object location task. For the recognition task, participants were required to respond to two of four target objects (animals) and withhold response to the remaining two objects. For the location task, participants responded when an object occupied either of two target locations and withheld response if the object occupied a different location. Target stimuli were presented either by vision alone, audition alone, or bimodally. In both tasks cross-modal cues were either congruent or incongruent. The results revealed that response time performance in both the object recognition task and in the object location task benefited from the presence of a congruent cross-modal cue, relative to incongruent or unisensory conditions. In the younger adult group, the effect was strongest for response times although the same pattern was found for accuracy in the object location task but not for the recognition task. Following recent studies on multisensory integration in children (e.g., Brandwein, 2010; Gori, 2008), we then tested performance in children (i.e., 8–14 year olds) using the same task. Although overall performance was affected by age, our findings suggest interesting parallels in the benefit of congruent, cross-modal cues between children and adults, for both object recognition and location tasks.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"38-38"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X646604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64427104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Garner’s paradigm and audiovisual correspondence in dynamic stimuli: Pitch and vertical direction","authors":"Z. Eitan, L. Marks","doi":"10.1163/187847612X646910","DOIUrl":"https://doi.org/10.1163/187847612X646910","url":null,"abstract":"Garner’s speeded discrimination paradigm is a central tool in studying crossmodal interaction, revealing automatic perceptual correspondences between dimensions in different modalities. To date, however, the paradigm has been used solely with static, unchanging stimuli, limiting its ecological validity. Here, we use Garner’s paradigm to examine interactions between dynamic (time-varying) audiovisual dimensions — pitch direction and vertical visual motion. In Experiment 1, 32 participants rapidly discriminated ascending vs. descending pitch glides, ignoring concurrent visual motion (auditory task), and ascending vs. descending visual motion, ignoring pitch change (visual task). Results in both tasks revealed strong congruence effects, but no Garner interference, an unusual pattern inconsistent with some interpretations of Garner interference. To examine whether this pattern of results is specific to dynamic stimuli, Experiment 2 (testing another 64 participants) used a modified Garner design with two baseline conditions: The irrelevant stimuli were dynamic in one baseline and static in the other, the test stimuli always being dynamic. The results showed significant Garner interference relative to the static baseline (for both the auditory and visual tasks), but not relative to the dynamic baseline. Congruence effects were evident throughout. We suggest that dynamic stimuli reduce attention to and memory of between-trial variation, thereby reducing Garner interference. Because congruence effects depend primarily on within-trial relations, however, congruence effects are unaffected. Results indicate how a classic tool such as Garner’s paradigm, used productively to examine dimensional interactions between static stimuli, may be readily adapted to probe the radically different behavior of dynamic, time-varying multisensory stimuli.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"70-70"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X646910","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64427301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved tactile acuity following perceptual learning generalises to untrained fingers","authors":"V. Harrar, C. Spence, T. Makin","doi":"10.1163/187847612X647027","DOIUrl":"https://doi.org/10.1163/187847612X647027","url":null,"abstract":"The body is represented in a somatotopic framework such that adjacent body parts are represented next to each other in the brain. We utilised the organisation of the somatosensory cortex to study the generalisation pattern of tactile perceptual learning. Perceptual learning refers to the process of long-lasting improvement in the performance of a perceptual task following persistent sensory exposure. In order to test if perceptual learning generalises to neighbouring brain/body areas, 12 participants were trained on a tactile discrimination task on one fingertip (using tactile oriented gratings) over the course of four days. Thresholds for tactile acuity were estimated prior to, and following, the training for the ‘trained’ finger and three additional fingers: ‘adjacent’, ‘homologous’ (the same finger as trained but on the opposite hand) and ‘other’ (which was neither adjacent nor homologous to the trained finger). Identical threshold estimating with no training was also carried out for a control group. Following training, tactile thresholds were improved (as compared to the control group). Importantly, improved performance was not exclusive for the trained finger; it generalised to the adjacent and homologous fingers, but not the other finger. We found that perceptual learning indeed generalises in a way that can be predicted by the topography of the somatosensory cortex, suggesting that sensory experience is not necessary for perceptual learning. These findings may be translated to rehabilitation procedures that train the partially-deprived cortex using similar principles of perceptual learning generalisation, such as following amputation or blindness in adults.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"69 1","pages":"82-82"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X647027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64427598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human sounds facilitates conscious processing of emotional faces","authors":"Bernard M. C. Stienen, F. Newell","doi":"10.1163/187847612X647513","DOIUrl":"https://doi.org/10.1163/187847612X647513","url":null,"abstract":"The interaction of audio–visual signals transferring information about the emotional state of others may play a significant role in social engagement. There is ample evidence that recognition of visual emotional information does not necessarily depend on conscious processing. However, little is known about how multisensory integration of affective signals relates to visual awareness. Previous research using masking experiments has shown relative independence of audio–visual integration on visual awareness. However, masking does not capture the dynamic nature of consciousness in which dynamic stimulus selection depends on a multitude of signals. Therefore, we presented neutral and happy faces in one eye and houses in the other resulting in perceptual rivalry between the two stimuli while at the same time we presented laughing, coughing or no sound. The participants were asked to report when they saw the faces, houses or their mixtures and were instructed to ignore the playback of sounds. When happy facial expressions were shown participants reported seeing fewer houses in comparison to when neutral expressions were shown. In addition, human sounds increase the viewing time of faces in comparison when there was no sound. Taken together, emotional expressions of the face affect which face is selected for visual awareness and at the same time, this is facilitated by human sounds.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"118-118"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X647513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64427855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TMS entrainment of pre-stimulus oscillatory activity in tactile perception","authors":"M. Ruzzoli, S. Soto-Faraco","doi":"10.1163/187847612X647838","DOIUrl":"https://doi.org/10.1163/187847612X647838","url":null,"abstract":"It is widely recognized that oscillatory activity plays an important functional role in neural systems. Decreases in alpha (∼10 Hz) EEG/MEG activity in the parietal cortex correlate with the deployment of spatial attention controlateral to target location in visual, auditory and tactile domains. Recently, repetitive Transcranial Magnetic Stimulation (rTMS) has been successfully applied to entrain a specific frequency at the parietal cortex (IPS) and the visual cortex. A short burst of 10 Hz rTMS impaired contralateral visual target detection and improved it ipsilaterally, compared to other control frequencies. This finding suggests a causal role of rhythmic activity in the alfa range in perception. The aim of the present study is to address whether entraining alpha frequency in the IPS plays a role in tactile orienting, indicating similarities between senses (vision and touch) in the communication between top-down (parietal) and primary sensory areas (V1 or S1). We applied rhythmic TMS at 10 and 20 Hz to the (right or left) IPS and S1, immediately before a masked vibrotactile target stimulus (present in 50% of the trials) to the left or right hand. Preliminary results lean towards the consequential effects of entraining alpha frequency into IPS for tactile detection such that it decreases tactile perception contralaterally and increases it ipsilaterally, compared to Beta frequency.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"152-152"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X647838","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64428165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-point touch discrimination depends on the perceived length of the arm","authors":"L. Harris, Sarah D’Amour, Lisa M. Pritchett","doi":"10.1163/187847612X647595","DOIUrl":"https://doi.org/10.1163/187847612X647595","url":null,"abstract":"Two-point discrimination threshold depends on the number and size of receptive fields between the touches. But what determines the size of the receptive fields? Are they anatomically fixed? Or are they related to perceived body size? To answer this question we manipulated perceived arm length using the Pinocchio illusion. The test arm was held at the wrist and the holding arm was made to feel perceptually more extended than it was by applying vibration to the tendon of the biceps (cf. de Vignemont et al., 2005). For control trials the holding arm was vibrated elsewhere. An array of tactors, separated by 3 cm, was placed on the upper surface of the arm and covered with a cloth. Vibro-tactile stimulation was applied to either one or two tactors in two periods. Subjects identified which period contained two stimuli. A psychometric function was drawn through the probability of correct response as a function of tactor separation to determine the threshold distance. In a separate experiment, subjects estimated the perceived location of each tactor against a scale laid on top of the cloth. The estimated locations of the tactors on the tested arm were displaced by tendon vibration of the holding arm compatible with a perceptual lengthening of the arm. The threshold for two-touch discrimination was significantly increased from 4.5 (±0.6) cm with no tendon stimulation to 5.7 (±0.5) cm when the arm was perceptually extended. We conclude that two-point touch discrimination depends on the size of central receptive fields that become larger when the arm is perceptually lengthened.","PeriodicalId":49553,"journal":{"name":"Seeing and Perceiving","volume":"25 1","pages":"126-126"},"PeriodicalIF":0.0,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1163/187847612X647595","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64428319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}