{"title":"The gut-brain vascular axis in neuroinflammation","authors":"Sara Carloni , Maria Rescigno","doi":"10.1016/j.smim.2023.101802","DOIUrl":"10.1016/j.smim.2023.101802","url":null,"abstract":"<div><p>The multifaceted microbiota characterizing our gut plays a crucial role in maintaining immune, metabolic and tissue homeostasis of the intestine as well as of distal organs, including the central nervous system. Microbial dysbiosis is reported in several inflammatory intestinal diseases characterized by the impairment of the gut epithelial and vascular barriers, defined as leaky gut, and it is reported as a potential danger condition associated with the development of metabolic, inflammatory and neurodegenerative diseases. Recently, we pointed out the strict connection between the gut and the brain via a novel vascular axis. Here we want to deepen our knowledge on the gut-brain axis, with particular emphasis on the connection between microbial dysbiosis, leaky gut, cerebral and gut vascular barriers, and neurodegenerative diseases. The firm association between microbial dysbiosis and impairment of the vascular gut-brain axis will be summarized in the context of protection, amelioration or boosting of Alzheimer, Parkinson, Major depressive and Anxiety disorders. Understanding the relationship between disease pathophysiology, mucosal barrier function and host-microbe interaction will foster the use of the microbiome as biomarker for health and disease as well as a target for therapeutic and nutritional advances.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101802"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10157152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immune responses to SARS-CoV-2 infection and vaccination in children","authors":"Petter Brodin","doi":"10.1016/j.smim.2023.101794","DOIUrl":"10.1016/j.smim.2023.101794","url":null,"abstract":"<div><p>During the three years since SARS-CoV-2 infections were first described a wealth of information has been gathered about viral variants and their changing properties, the disease presentations they elicit and how the many vaccines developed in record time protect from COVID-19 severe disease in different populations. A general theme throughout the pandemic has been the observation that children and young people in general fare well, with mild symptoms during acute infection and full recovery thereafter. It has also become clear that this is not universally true, as some children develop severe COVID-19 hypoxic pneumonia and even succumb to the infection, while another group of children develop a rare but serious multisystem inflammatory syndrome (MIS-C) and some other children experience prolonged illness following acute infection, post-COVID. Here I will discuss some of the findings made to explain these diverse disease manifestations in children and young people infected by SARS-CoV-2. I will also discuss the vaccines developed at record speed and their efficacy in protecting children from disease.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101794"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10164843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swathy O. Vasudevan , Bharat Behl , Vijay A. Rathinam
{"title":"Pyroptosis-induced inflammation and tissue damage","authors":"Swathy O. Vasudevan , Bharat Behl , Vijay A. Rathinam","doi":"10.1016/j.smim.2023.101781","DOIUrl":"10.1016/j.smim.2023.101781","url":null,"abstract":"<div><p>Pyroptosis is a programmed necrotic cell death executed by gasdermins, a family of pore-forming proteins. The cleavage of gasdermins by specific proteases enables their pore-forming activity. The activation of the prototype member of the gasdermin family, gasdermin D (GSDMD), is linked to innate immune monitoring by inflammasomes. Additional gasdermins such as GSDMA, GSDMB, GSDMC, and GSDME are activated by inflammasome-independent mechanisms. Pyroptosis is emerging as a key host defense strategy against pathogens. However, excessive pyroptosis causes cytokine storm and detrimental inflammation leading to tissue damage and organ dysfunction. Consequently, dysregulated pyroptotic responses contribute to the pathogenesis of various diseases, including sepsis, atherosclerosis, acute respiratory distress syndrome, and neurodegenerative disorders. This review will discuss the inflammatory consequences of pyroptosis and the mechanisms of pyroptosis-induced tissue damage and disease pathogenesis.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101781"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10168538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ines Sturmlechner , Abhinav Jain , Yunmei Mu , Cornelia M. Weyand , Jörg J. Goronzy
{"title":"T cell fate decisions during memory cell generation with aging","authors":"Ines Sturmlechner , Abhinav Jain , Yunmei Mu , Cornelia M. Weyand , Jörg J. Goronzy","doi":"10.1016/j.smim.2023.101800","DOIUrl":"10.1016/j.smim.2023.101800","url":null,"abstract":"<div><p>The defense against infectious diseases, either through natural immunity or after vaccinations, relies on the generation and maintenance of protective T cell memory. Naïve T cells are at the center of memory T cell generation during primary responses. Upon activation, they undergo a complex, highly regulated differentiation process towards different functional states. Naïve T cells maintained into older age have undergone epigenetic adaptations that influence their fate decisions during differentiation. We review age-sensitive, molecular pathways and gene regulatory networks that bias naïve T cell differentiation towards effector cell generation at the expense of memory and Tfh cells. As a result, T cell differentiation in older adults is associated with release of bioactive waste products into the microenvironment, higher stress sensitivity as well as skewing towards pro-inflammatory signatures and shorter life spans. These maladaptations not only contribute to poor vaccine responses in older adults but also fuel a more inflammatory state.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101800"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10169088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"T follicular helper cells in cancer, tertiary lymphoid structures, and beyond","authors":"Can Cui , Joseph Craft , Nikhil S. Joshi","doi":"10.1016/j.smim.2023.101797","DOIUrl":"10.1016/j.smim.2023.101797","url":null,"abstract":"<div><p>With the emergence and success of checkpoint blockade immunotherapy, immuno-oncology has primarily focused on CD8 T cells, whose cytotoxic programs directly target tumor cells. However, the limited response rate of current immunotherapy regimens has prompted investigation into other types of tumor-infiltrating immune cells, such as CD4 T cells and B cells, and how they interact with CD8 T cells in a coordinated network. Recent studies have demonstrated the potential therapeutic benefits of CD4 T follicular helper (TFH) cells and B cells in cancer, highlighting the important role of their crosstalk and interactions with other immune cell components in the tumor microenvironment. These interactions also occur in tumor-associated tertiary lymphoid structures (TLS), which resemble secondary lymphoid organs (SLOs) with orchestrated vascular, chemokine, and cellular infrastructures that support the developmental pathways of functional immune cells. In this review, we discuss recent breakthroughs on TFH biology and T cell-B cell interactions in tumor immunology, and their potential as novel therapeutic targets to advance cancer treatment.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101797"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"B cells and the intestinal microbiome in time, space and place","authors":"Oliver Pabst , Carla R. Nowosad","doi":"10.1016/j.smim.2023.101806","DOIUrl":"10.1016/j.smim.2023.101806","url":null,"abstract":"<div><p>The gut immune system is shaped by the continuous interaction with the microbiota. Here we dissect temporal, spatial and contextual layers of gut B cell responses. The microbiota impacts on the selection of the developing pool of pre-immune B cells that serves as substrate for B cell activation, expansion and differentiation. However, various aspects of the gut B cell response display unique features. In particular, occurrence of somatically mutated B cells, chronic gut germinal centers in T cell-deficient settings and polyreactive binding of gut IgA to the microbiota questioned the nature and microbiota-specificity of gut germinal centers. We propose a model to reconcile these observations incorporating recent work demonstrating microbiota-specificity of gut germinal centers. We speculate that adjuvant effects of the microbiota might modify permissiveness for B cell to enter and exit gut germinal centers. We propose that separating aspects of time, space and place facilitate the occasionally puzzling discussion of gut B cell responses to the microbiota.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101806"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10157617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial gasdermins: More than a billion years of pyroptotic-like cell death","authors":"Qi Zheng , Asen Daskalov","doi":"10.1016/j.smim.2023.101813","DOIUrl":"10.1016/j.smim.2023.101813","url":null,"abstract":"<div><p>In the recent past, the concept of immunity has been extended to eukaryotic and prokaryotic microorganisms, like fungi and bacteria. The latest findings have drawn remarkable evolutionary parallels between metazoan and microbial defense-related genes, unveiling a growing number of shared transkingdom components of immune systems. One such component is the gasdermin family of pore-forming proteins – executioners of a highly inflammatory immune cell death program in mammals, termed pyroptosis. Pyroptotic cell death limits the spread of intracellular pathogens by eliminating infected cells and coordinates the broader inflammatory response to infection. The microbial gasdermins have similarly been implicated in defense-related cell death reactions in fungi, bacteria and archaea. Moreover, the discovery of the molecular regulators of gasdermin cytotoxicity in fungi and bacteria, has established additional evolutionary links to mammalian pyroptotic pathways. Here, we focus on the gasdermin proteins in microorganisms and their role in organismal defense and provide perspective on this remarkable case study in comparative immunology.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101813"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10157621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanna C. Huston , Marisa J. Anderson , Susan L. Fink
{"title":"Pyroptosis and the cellular consequences of gasdermin pores","authors":"Hanna C. Huston , Marisa J. Anderson , Susan L. Fink","doi":"10.1016/j.smim.2023.101803","DOIUrl":"10.1016/j.smim.2023.101803","url":null,"abstract":"<div><p>The family of gasdermin proteins plays a key role in the host response against external and internal pathogenic signals by mediating the form of inflammatory regulated cell death known as pyroptosis. One of the most well-studied gasdermins within innate immunity is gasdermin D, which is cleaved, oligomerizes, and forms plasma membrane pores. Gasdermin D pores lead to a number of downstream cellular consequences including plasma membrane rupture, or cell lysis. In this review, we describe mechanisms of activation for each of the gasdermins, their cell type specificity and some disease associations. We then discuss downstream consequences of gasdermin pore formation, including cellular mechanisms of membrane repair. Finally, we present some important next steps to better understand pyroptosis and the cellular consequences of gasdermin pore formation.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101803"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10167088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Holly Steininger , Jacqueline Moltzau-Anderson , Susan V. Lynch
{"title":"Contributions of the early-life microbiome to childhood atopy and asthma development","authors":"Holly Steininger , Jacqueline Moltzau-Anderson , Susan V. Lynch","doi":"10.1016/j.smim.2023.101795","DOIUrl":"10.1016/j.smim.2023.101795","url":null,"abstract":"<div><p>The rapid rise in atopy and asthma in industrialized nations has led to the identification of early life environmental factors that promote these conditions and spurred research into how such exposures may mediate the trajectory to childhood disease development. Over the past decade, the human microbiome has emerged as a key determinant of human health. This is largely due to the increasing appreciation for the myriad of non-mutually exclusive mechanisms by which microbes tune and train host immunity. Microbiomes, particularly those in early life, are shaped by extrinsic and intrinsic factors, including many of the exposures known to influence allergy and asthma risk. This has led to the over-arching hypothesis that such exposures mediate their effect on childhood atopy and asthma by altering the functions and metabolic productivity of microbiomes that shape immune function during this critical developmental period. The capacity to study microbiomes at the genetic and molecular level in humans from the pre-natal period into childhood with well-defined clinical outcomes, offers an unprecedented opportunity to identify early-life and inter-generational determinants of atopy and asthma outcomes. Moreover, such studies provide an integrative microbiome research framework that can be applied to other chronic inflammatory conditions. This review attempts to capture key studies in the field that offer insights into the developmental origins of childhood atopy and asthma, providing novel insights into microbial mediators of maladaptive immunity and chronic inflammatory disease in childhood.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101795"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10166598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yanyan Zheng , Qingxiang Liu , Jorg J. Goronzy , Cornelia M. Weyand
{"title":"Immune aging – A mechanism in autoimmune disease","authors":"Yanyan Zheng , Qingxiang Liu , Jorg J. Goronzy , Cornelia M. Weyand","doi":"10.1016/j.smim.2023.101814","DOIUrl":"10.1016/j.smim.2023.101814","url":null,"abstract":"<div><p>Evidence is emerging that the process of immune aging is a mechanism leading to autoimmunity. Over lifetime, the immune system adapts to profound changes in hematopoiesis and lymphogenesis, and progressively restructures in face of an ever-expanding exposome. Older adults fail to generate adequate immune responses against microbial infections and tumors, but accumulate aged T cells, B cells and myeloid cells. Age-associated B cells are highly efficient in autoantibody production. T-cell aging promotes the accrual of end-differentiated effector T cells with potent cytotoxic and pro-inflammatory abilities and myeloid cell aging supports a low grade, sterile and chronic inflammatory state (inflammaging). In pre-disposed individuals, immune aging can lead to frank autoimmune disease, manifesting with chronic inflammation and irreversible tissue damage. Emerging data support the concept that autoimmunity results from aging-induced failure of fundamental cellular processes in immune effector cells: genomic instability, loss of mitochondrial fitness, failing proteostasis, dwindling lysosomal degradation and inefficient autophagy. Here, we have reviewed the evidence that malfunctional mitochondria, disabled lysosomes and stressed endoplasmic reticula induce pathogenic T cells and macrophages that drive two autoimmune diseases, rheumatoid arthritis (RA) and giant cell arteritis (GCA). Recognizing immune aging as a risk factor for autoimmunity will open new avenues of immunomodulatory therapy, including the repair of malfunctioning mitochondria and lysosomes.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"69 ","pages":"Article 101814"},"PeriodicalIF":7.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10158130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}