SIAM Journal on Imaging Sciences最新文献

筛选
英文 中文
Convergence Analysis of Volumetric Stretch Energy Minimization and Its Associated Optimal Mass Transport 体积拉伸能量最小化及其最优质量输运的收敛性分析
3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-09-08 DOI: 10.1137/22m1528756
Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin, Mei-Heng Yueh, Shing-Tung Yau
{"title":"Convergence Analysis of Volumetric Stretch Energy Minimization and Its Associated Optimal Mass Transport","authors":"Tsung-Ming Huang, Wei-Hung Liao, Wen-Wei Lin, Mei-Heng Yueh, Shing-Tung Yau","doi":"10.1137/22m1528756","DOIUrl":"https://doi.org/10.1137/22m1528756","url":null,"abstract":"","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"79 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136362298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation 黎曼辐射传递方程系数反问题的凸化数值解法
3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-08-29 DOI: 10.1137/23m1565449
Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Vladimir Romanov, Zhipeng Yang
{"title":"Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation","authors":"Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Vladimir Romanov, Zhipeng Yang","doi":"10.1137/23m1565449","DOIUrl":"https://doi.org/10.1137/23m1565449","url":null,"abstract":"The first globally convergent numerical method for a coefficient inverse problem for the Riemannian radiative transfer equation (RRTE) is constructed. This is a version of the so-called convexification method, which has been pursued by this research group for a number of years for some other CIPs for PDEs. Those PDEs are significantly different from the RRTE. The presence of the Carleman weight function in the numerical scheme is the key element which insures the global convergence. Convergence analysis is presented along with the results of numerical experiments, which confirm the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially variable dielectric constant of the medium.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136242991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Image Denoising: The Deep Learning Revolution and Beyond—A Survey Paper 图像去噪:深度学习革命和超越-一篇调查论文
3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-08-24 DOI: 10.1137/23m1545859
Michael Elad, Bahjat Kawar, Gregory Vaksman
{"title":"Image Denoising: The Deep Learning Revolution and Beyond—A Survey Paper","authors":"Michael Elad, Bahjat Kawar, Gregory Vaksman","doi":"10.1137/23m1545859","DOIUrl":"https://doi.org/10.1137/23m1545859","url":null,"abstract":"Image denoising—removal of additive white Gaussian noise from an image—is one of the oldest and most studied problems in image processing. Extensive work over several decades has led to thousands of papers on this subject, and to many well-performing algorithms for this task. Indeed, 10 years ago, these achievements led some researchers to suspect that “Denoising is Dead,” in the sense that all that can be achieved in this domain has already been obtained. However, this turned out to be far from the truth, with the penetration of deep learning (DL) into the realm of image processing. The era of DL brought a revolution to image denoising, both by taking the lead in today’s ability for noise suppression in images, and by broadening the scope of denoising problems being treated. Our paper starts by describing this evolution, highlighting in particular the tension and synergy that exist between classical approaches and modern artificial intelligence (AI) alternatives in design of image denoisers. The recent transitions in the field of image denoising go far beyond the ability to design better denoisers. In the second part of this paper we focus on recently discovered abilities and prospects of image denoisers. We expose the possibility of using image denoisers for service of other problems, such as regularizing general inverse problems and serving as the prime engine in diffusion-based image synthesis. We also unveil the (strange?) idea that denoising and other inverse problems might not have a unique solution, as common algorithms would have us believe. Instead, we describe constructive ways to produce randomized and diverse high perceptual quality results for inverse problems, all fueled by the progress that DL brought to image denoising. This is a survey paper, and its prime goal is to provide a broad view of the history of the field of image denoising and closely related topics in image processing. Our aim is to give a better context to recent discoveries, and to the influence of the AI revolution in our domain.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134983002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Linear Sampling Method for Random Sources 随机源的线性抽样方法
3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-08-23 DOI: 10.1137/22m1531336
Josselin Garnier, Houssem Haddar, Hadrien Montanelli
{"title":"The Linear Sampling Method for Random Sources","authors":"Josselin Garnier, Houssem Haddar, Hadrien Montanelli","doi":"10.1137/22m1531336","DOIUrl":"https://doi.org/10.1137/22m1531336","url":null,"abstract":"We present an extension of the linear sampling method for solving the sound-soft inverse acoustic scattering problem with randomly distributed point sources. The theoretical justification of our sampling method is based on the Helmholtz–Kirchhoff identity, the cross-correlation between measurements, and the volume and imaginary near-field operators, which we introduce and analyze. Implementations in MATLAB using boundary elements, the SVD, Tikhonov regularization, and Morozov’s discrepancy principle are also discussed. We demonstrate the robustness and accuracy of our algorithms with several numerical experiments in two dimensions.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135520275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Imaging a Moving Point Source from Multifrequency Data Measured at One and Sparse Observation Directions (Part I): Far-Field Case 从一个和稀疏观测方向测量的多频数据成像移动点源(第一部分):远场情况
3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-08-17 DOI: 10.1137/23m1545045
Hongxia Guo, Guanghui Hu, Guanqiu Ma
{"title":"Imaging a Moving Point Source from Multifrequency Data Measured at One and Sparse Observation Directions (Part I): Far-Field Case","authors":"Hongxia Guo, Guanghui Hu, Guanqiu Ma","doi":"10.1137/23m1545045","DOIUrl":"https://doi.org/10.1137/23m1545045","url":null,"abstract":"We propose a multifrequency algorithm for recovering partial information on the trajectory of a moving point source from one and sparse far-field observation directions in the frequency domain. The starting and terminal time points of the moving source are both supposed to be known. We introduce the concept of observable directions (angles) in the far-field region and derive all observable directions (angles) for straight and circular motions. The existence of nonobservable directions makes this paper much different from inverse stationary source problems. At an observable direction, it is verified that the smallest strip containing the trajectory and perpendicular to the direction can be imaged, provided the angle between the observation direction and the velocity vector of the moving source lies in . If otherwise, one can only expect to recover a strip thinner than this smallest strip for straight and circular motions. The far-field data measured at sparse observable directions can be used to recover the -convex domain of the trajectory. Both two- and three-dimensional numerical examples are implemented to show effectiveness and feasibility of the approach.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136272285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singular Value Decomposition of the Wave Forward Operator with Radial Variable Coefficients 径向变系数波正演算子的奇异值分解
3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-08-11 DOI: 10.1137/22m1511643
Minam Moon, Injo Hur, Sunghwan Moon
{"title":"Singular Value Decomposition of the Wave Forward Operator with Radial Variable Coefficients","authors":"Minam Moon, Injo Hur, Sunghwan Moon","doi":"10.1137/22m1511643","DOIUrl":"https://doi.org/10.1137/22m1511643","url":null,"abstract":"Photoacoustic tomography (PAT) is a novel and promising technology in hybrid medical imaging that involves generating acoustic waves in the object of interest by stimulating electromagnetic energy. The acoustic wave is measured outside the object. One of the key mathematical problems in PAT is the reconstruction of the initial function that contains diagnostic information from the solution of the wave equation on the surface of the acoustic transducers. Herein, we propose a wave forward operator that assigns an initial function to obtain the solution of the wave equation on a unit sphere. Under the assumption of the radial variable speed of ultrasound, we obtain the singular value decomposition of this wave forward operator by determining the orthonormal basis of a certain Hilbert space comprising eigenfunctions. In addition, numerical simulation results obtained using the continuous Galerkin method are utilized to validate the inversion resulting from the singular value decomposition.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135442011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown View Tomography 基于空间一致性的三维未知视图层析成像正交矩阵检索
3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-08-08 DOI: 10.1137/22m1498218
Shuai Huang, Mona Zehni, Ivan Dokmanić, Zhizhen Zhao
{"title":"Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown View Tomography","authors":"Shuai Huang, Mona Zehni, Ivan Dokmanić, Zhizhen Zhao","doi":"10.1137/22m1498218","DOIUrl":"https://doi.org/10.1137/22m1498218","url":null,"abstract":"Unknown view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations. A line of work starting with Kam (1980) employs the method of moments with rotation-invariant Fourier features to solve UVT in the frequency domain, assuming that the orientations are uniformly distributed. This line of work includes the recent orthogonal matrix retrieval (OMR) approaches based on matrix factorization, which, while elegant, either require side information about the density that is not available or fail to be sufficiently robust. For OMR to break free from those restrictions, we propose to jointly recover the density map and the orthogonal matrices by requiring that they be mutually consistent. We regularize the resulting nonconvex optimization problem by a denoised reference projection and a nonnegativity constraint. This is enabled by the new closed-form expressions for spatial autocorrelation features. Further, we design an easy-to-compute initial density map which effectively mitigates the nonconvexity of the reconstruction problem. Experimental results show that the proposed OMR with spatial consensus is more robust and performs significantly better than the previous state-of-the-art OMR approach in the typical low signal-to-noise-ratio scenario of 3D UVT.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135746488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Image Recovery for Blind Polychromatic Ptychography 盲多色印刷的图像恢复
3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-07-28 DOI: 10.1137/22m1527155
Frank Filbir, Oleh Melnyk
{"title":"Image Recovery for Blind Polychromatic Ptychography","authors":"Frank Filbir, Oleh Melnyk","doi":"10.1137/22m1527155","DOIUrl":"https://doi.org/10.1137/22m1527155","url":null,"abstract":"Ptychography is a lensless imaging technique, which considers reconstruction from a set of far-field diffraction patterns obtained by illuminating small overlapping regions of the specimen. In many cases, the distribution of light inside the illuminated region is unknown and has to be estimated along with the object of interest. This problem is referred to as blind ptychography. While in ptychography the illumination is commonly assumed to have a point spectrum, in this paper we consider an alternative scenario with a nontrivial light spectrum known as blind polychromatic ptychography. First, we show that nonblind polychromatic ptychography can be seen as a recovery from quadratic measurements. Then, a reconstruction from such measurements can be performed by a variant of the Amplitude Flow algorithm, which has guaranteed sublinear convergence to a critical point. Second, we address recovery from blind polychromatic ptychographic measurements by devising an alternating minimization version of Amplitude Flow and showing that it converges to a critical point at a sublinear rate.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134966068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Separable Quaternion Matrix Factorization for Polarization Images 偏振图像的可分离四元数矩阵分解
IF 2.1 3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-07-26 DOI: 10.1137/22m151248x
Junjun Pan, Michael K. Ng
{"title":"Separable Quaternion Matrix Factorization for Polarization Images","authors":"Junjun Pan, Michael K. Ng","doi":"10.1137/22m151248x","DOIUrl":"https://doi.org/10.1137/22m151248x","url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 16, Issue 3, Page 1281-1307, September 2023. <br/> Abstract. A transverse wave is a wave in which the particles are displaced perpendicular to the direction of the wave’s advance. Examples of transverse waves include ripples on the surface of water and light waves. Polarization is one of the primary properties of transverse waves. Analysis of polarization states can reveal valuable information about the sources. In this paper, we propose a separable low-rank quaternion linear mixing model for polarized signals: we assume each column of the source factor matrix equals a column of the polarized data matrix and refer to the corresponding problem as separable quaternion matrix factorization (SQMF). We discuss some properties of the matrix that can be decomposed by SQMF. To determine the source factor matrix in quaternion space, we propose a heuristic algorithm called quaternion successive projection algorithm (QSPA) inspired by the successive projection algorithm. To guarantee the effectiveness of QSPA, a new normalization operator is proposed for the quaternion matrix. We use a block coordinate descent algorithm to compute nonnegative activation matrix in real number space. We test our method on the applications of polarization image representation and spectro-polarimetric imaging unmixing to verify its effectiveness.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"14 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Provable Phase Retrieval with Mirror Descent 可证明的相位反演与镜像下降
IF 2.1 3区 数学
SIAM Journal on Imaging Sciences Pub Date : 2023-07-14 DOI: 10.1137/22m1528896
Jean-Jacques Godeme, Jalal Fadili, Xavier Buet, Myriam Zerrad, Michel Lequime, Claude Amra
{"title":"Provable Phase Retrieval with Mirror Descent","authors":"Jean-Jacques Godeme, Jalal Fadili, Xavier Buet, Myriam Zerrad, Michel Lequime, Claude Amra","doi":"10.1137/22m1528896","DOIUrl":"https://doi.org/10.1137/22m1528896","url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 16, Issue 3, Page 1106-1141, September 2023. <br/> Abstract. In this paper, we consider the problem of phase retrieval, which consists of recovering an [math]‐dimensional real vector from the magnitude of its [math] linear measurements. We propose a mirror descent (or Bregman gradient descent) algorithm based on a wisely chosen Bregman divergence, hence allowing us to remove the classical global Lipschitz continuity requirement on the gradient of the nonconvex phase retrieval objective to be minimized. We apply the mirror descent for two random measurements: the i.i.d. standard Gaussian and those obtained by multiple structured illuminations through coded diffraction patterns. For the Gaussian case, we show that when the number of measurements [math] is large enough, then with high probability, for almost all initializers, the algorithm recovers the original vector up to a global sign change. For both measurements, the mirror descent exhibits a local linear convergence behavior with a dimension-independent convergence rate. Finally, our theoretical results are illustrated with various numerical experiments, including an application to the reconstruction of images in precision optics.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"6 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信