Provable Phase Retrieval with Mirror Descent

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jean-Jacques Godeme, Jalal Fadili, Xavier Buet, Myriam Zerrad, Michel Lequime, Claude Amra
{"title":"Provable Phase Retrieval with Mirror Descent","authors":"Jean-Jacques Godeme, Jalal Fadili, Xavier Buet, Myriam Zerrad, Michel Lequime, Claude Amra","doi":"10.1137/22m1528896","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 16, Issue 3, Page 1106-1141, September 2023. <br/> Abstract. In this paper, we consider the problem of phase retrieval, which consists of recovering an [math]‐dimensional real vector from the magnitude of its [math] linear measurements. We propose a mirror descent (or Bregman gradient descent) algorithm based on a wisely chosen Bregman divergence, hence allowing us to remove the classical global Lipschitz continuity requirement on the gradient of the nonconvex phase retrieval objective to be minimized. We apply the mirror descent for two random measurements: the i.i.d. standard Gaussian and those obtained by multiple structured illuminations through coded diffraction patterns. For the Gaussian case, we show that when the number of measurements [math] is large enough, then with high probability, for almost all initializers, the algorithm recovers the original vector up to a global sign change. For both measurements, the mirror descent exhibits a local linear convergence behavior with a dimension-independent convergence rate. Finally, our theoretical results are illustrated with various numerical experiments, including an application to the reconstruction of images in precision optics.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1528896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 16, Issue 3, Page 1106-1141, September 2023.
Abstract. In this paper, we consider the problem of phase retrieval, which consists of recovering an [math]‐dimensional real vector from the magnitude of its [math] linear measurements. We propose a mirror descent (or Bregman gradient descent) algorithm based on a wisely chosen Bregman divergence, hence allowing us to remove the classical global Lipschitz continuity requirement on the gradient of the nonconvex phase retrieval objective to be minimized. We apply the mirror descent for two random measurements: the i.i.d. standard Gaussian and those obtained by multiple structured illuminations through coded diffraction patterns. For the Gaussian case, we show that when the number of measurements [math] is large enough, then with high probability, for almost all initializers, the algorithm recovers the original vector up to a global sign change. For both measurements, the mirror descent exhibits a local linear convergence behavior with a dimension-independent convergence rate. Finally, our theoretical results are illustrated with various numerical experiments, including an application to the reconstruction of images in precision optics.
可证明的相位反演与镜像下降
SIAM影像科学杂志,第16卷,第3期,1106-1141页,2023年9月。摘要。在本文中,我们考虑相位恢复问题,它包括从[数学]维的线性测量值中恢复一个[数学]维的实向量。我们提出了一种基于明智选择的Bregman散度的镜像下降(或Bregman梯度下降)算法,从而使我们能够消除对要最小化的非凸相位检索目标梯度的经典全局Lipschitz连续性要求。我们将镜像下降应用于两种随机测量:i.i.d标准高斯和通过编码衍射图案获得的多个结构化照明。对于高斯情况,我们表明,当测量的数量[math]足够大时,那么对于几乎所有初始化器,算法都有很高的概率恢复原始向量,直到全局符号改变。对于这两种测量,镜面下降都表现出局部线性收敛行为,收敛速率与维数无关。最后,我们的理论结果通过各种数值实验加以说明,包括在精密光学图像重建中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信