黎曼辐射传递方程系数反问题的凸化数值解法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Vladimir Romanov, Zhipeng Yang
{"title":"黎曼辐射传递方程系数反问题的凸化数值解法","authors":"Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Vladimir Romanov, Zhipeng Yang","doi":"10.1137/23m1565449","DOIUrl":null,"url":null,"abstract":"The first globally convergent numerical method for a coefficient inverse problem for the Riemannian radiative transfer equation (RRTE) is constructed. This is a version of the so-called convexification method, which has been pursued by this research group for a number of years for some other CIPs for PDEs. Those PDEs are significantly different from the RRTE. The presence of the Carleman weight function in the numerical scheme is the key element which insures the global convergence. Convergence analysis is presented along with the results of numerical experiments, which confirm the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially variable dielectric constant of the medium.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation\",\"authors\":\"Michael V. Klibanov, Jingzhi Li, Loc H. Nguyen, Vladimir Romanov, Zhipeng Yang\",\"doi\":\"10.1137/23m1565449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first globally convergent numerical method for a coefficient inverse problem for the Riemannian radiative transfer equation (RRTE) is constructed. This is a version of the so-called convexification method, which has been pursued by this research group for a number of years for some other CIPs for PDEs. Those PDEs are significantly different from the RRTE. The presence of the Carleman weight function in the numerical scheme is the key element which insures the global convergence. Convergence analysis is presented along with the results of numerical experiments, which confirm the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially variable dielectric constant of the medium.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1565449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1565449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

构造了黎曼辐射传递方程(RRTE)系数反问题的第一个全局收敛数值方法。这是所谓的凸化方法的一个版本,该研究小组多年来一直在研究其他一些用于pde的cip。这些pde与RRTE有很大的不同。数值格式中Carleman权函数的存在是保证全局收敛的关键因素。给出了收敛性分析,并给出了数值实验结果,验证了理论的正确性。当光子沿着碰撞之间的测地线传播时,RRTE控制着光子在漫射介质中的传播。测地线是由介质的空间可变介电常数产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation
The first globally convergent numerical method for a coefficient inverse problem for the Riemannian radiative transfer equation (RRTE) is constructed. This is a version of the so-called convexification method, which has been pursued by this research group for a number of years for some other CIPs for PDEs. Those PDEs are significantly different from the RRTE. The presence of the Carleman weight function in the numerical scheme is the key element which insures the global convergence. Convergence analysis is presented along with the results of numerical experiments, which confirm the theory. RRTE governs the propagation of photons in the diffuse medium in the case when they propagate along geodesic lines between their collisions. Geodesic lines are generated by the spatially variable dielectric constant of the medium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信