Wenfeng Li , Huixian Fan , Lei Cai , Wenjing Guo , Ziteng Wu , Pengfei Yang
{"title":"Digital twin-driven proactive-reactive scheduling framework for port multi-equipment under a complex uncertain environment","authors":"Wenfeng Li , Huixian Fan , Lei Cai , Wenjing Guo , Ziteng Wu , Pengfei Yang","doi":"10.1016/j.simpat.2024.103011","DOIUrl":"10.1016/j.simpat.2024.103011","url":null,"abstract":"<div><p>The pervasive uncertainties in multiple port equipment scheduling frequently result in container handling delays or ineffective plans. To address the complexities and uncertainties of port multiple equipment integrated scheduling problem, this paper introduces a Digital Twin-driven (DT-driven) proactive-reactive scheduling framework for the first time. This framework is designed to promptly respond to uncertainties in the scheduling process and provide a transparent visualization of operational information. It specifically tackles the integrated scheduling problem of port quay cranes, Intelligent Guided Vehicles (IGVs), and yard cranes, considering uncertainties such as fluctuations in operating time, equipment failures, and IGV route conflicts. By developing a virtual container port simulation, which features a U-shaped port layout and double-cycling mode drawn from real-world scenarios, the paper evaluates the proposed framework's effectiveness. The experimental results demonstrate that the digital twin framework method significantly improves efficiency and conserves energy. Additionally, in large-scale conditions, the <em>makespan</em> difference between the DT-driven approach and the non-DT-driven approach is as much as 19.56 %. In terms of <em>energy consumption</em> savings, the DT-driven approach's scheduling plan can save 3.67 % of <em>energy consumption</em> under large-scale conditions. Moreover, as the fluctuation index increases, the <em>energy consumption</em> savings become even more significant. This paper also discusses the potential implications of adopting this framework for port companies, highlighting its benefits in enhancing operational and energy efficiency and its incorporation into port management systems. The sensitivity analysis can offer guidance to port companies on optimal equipment allocation strategies.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103011"},"PeriodicalIF":3.5,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"INFED: Enhancing fire evacuation dynamics through 3D congestion-aware indoor navigation framework","authors":"Ritik Bhardwaj , Arpita Bhargava , Vaibhav Kumar","doi":"10.1016/j.simpat.2024.103010","DOIUrl":"10.1016/j.simpat.2024.103010","url":null,"abstract":"<div><p>This paper introduces Indoor Navigation Framework for Fire Evacuation Dynamics (INFED), a novel indoor navigation framework that combines dynamic fire constraints and path congestion management. INFED considers the three-dimensional (3D) attributes of both the agents (speed, volume, location, count) and the environment (3D volume, congestion, corridor height, and corridor length) to estimate navigation routes that avoid fire-affected evacuation paths. It achieves this by integrating various proposed algorithms as modules: Environment Establisher, Fired/Safe Node Identifier, Pre-processor, Weighted Graph Generator, and Path Generator. The 3D features of the agent and environment are used to effectively estimate the capacity of the corridors in an indoor environment for the estimation of path congestion. The path congestion so computed is used during evacuation to identify the safest and congestion-free path. We discuss the performance of INFED by implementing it on various realistic scenarios in a commercial floor setup. We found that the incorporation of safety constraints results in longer evacuation routes, ranging from a 6% increase under mild fire and congestion conditions to a 40% increase under severe fire and congestion conditions. In the event of a worst-case scenario where fire-free paths are scarce, INFED utilizes congestion to reduce agent speed along the recommended evacuation route. This mechanism is activated when congestion surpasses a threshold of 0.3. The system can be used by stakeholders to test various evacuation hypotheses, which can lead to better preparedness and rescue operations, ultimately saving lives in the event of a fire.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103010"},"PeriodicalIF":3.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yalan Zhang , Yuhang Xu , Yanrui Xu , Yue Hou , Xiaokun Wang , Yu Guo , Mohammad S. Obaidat , Xiaojuan Ban
{"title":"Real-time screen space rendering method for particle-based multiphase fluid simulation","authors":"Yalan Zhang , Yuhang Xu , Yanrui Xu , Yue Hou , Xiaokun Wang , Yu Guo , Mohammad S. Obaidat , Xiaojuan Ban","doi":"10.1016/j.simpat.2024.103008","DOIUrl":"10.1016/j.simpat.2024.103008","url":null,"abstract":"<div><p>Existing fluid simulation techniques mainly process single-phase fluids, and they have difficulties in accurately simulating and visualizing multiphase fluid dynamics. This paper proposes a new method for the real-time rendering of multiphase fluid simulations, which uses smoothed particle hydrodynamics in screen space. Meanwhile, the method employs phase fraction textures to differentiate various materials in multiphase fluid simulations, thereby portraying mixing and separation effects more realistically. Besides, efficient texture computation allows it to be integrated seamlessly into real-time simulation rendering workflows. Extensive testing confirms the effectiveness of the proposed method in rendering multiphase fluid behaviors with high visual fidelity and demonstrates its capability to process frames within 0.01 s, even in cases with up to 300,000 particles. This study enhances the fluid dynamics simulation field and provides a more accurate and efficient method for visualizing complex multiphase fluids in simulations.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103008"},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141985553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Cascado-Caballero , Fernando Diaz-del-Rio , Daniel Cagigas-Muñiz , David Orellana-Martín , Ignacio Pérez-Hurtado
{"title":"A new approach for software-simulation of membrane systems using a multi-thread programming model","authors":"Daniel Cascado-Caballero , Fernando Diaz-del-Rio , Daniel Cagigas-Muñiz , David Orellana-Martín , Ignacio Pérez-Hurtado","doi":"10.1016/j.simpat.2024.103007","DOIUrl":"10.1016/j.simpat.2024.103007","url":null,"abstract":"<div><p>The evolution of simulation and implementation of P systems has been intense since the theoretical model of computation was created. In the field of software simulation of P systems, the proposals made so far have taken advantage mainly of the parallelism of GPUs, but not of the parallelism of existing multi-core processors. This paper proposes a new model for simulating P systems using a multi-threaded approach in a multi-core processor. This simulation approach establishes a new paradigm that is entirely in line with the philosophy of P-systems: since objects must react in parallel, asynchronously and autonomously with other objects, simulation using multiple synchronized threads completely mimics the behavior of objects within a membrane. This proposal has been implemented and tested using a simulator programmed in C#, and its correct operation has been tested for confluent and non-confluent systems. The experimental results confirm that the simulator scales well with the number of hardware threads of a multiprocessor. The obtained results show that the new model is correct and that it can be extended to other more complex types of P systems, in order to discover which are the limit of this multi-threaded approach when running it in multi-core processors.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103007"},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001217/pdfft?md5=051d2b5a0e4f14a254b5d9b67b0b861e&pid=1-s2.0-S1569190X24001217-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation of the selective laser sintering/melting process of bioactive glass 45S5","authors":"Dmytro Svyetlichnyy","doi":"10.1016/j.simpat.2024.103009","DOIUrl":"10.1016/j.simpat.2024.103009","url":null,"abstract":"<div><p>Additive manufacturing processes, including selective laser sintering (SLS) and selective laser melting (SLM), are rapidly developing industrial fields that require scientific support. Although SLS and SLM are very similar, the level of modeling and simulation of SLM is much higher than that of SLS. This results in the number of publications before 2024 according to Web of Science with SLM simulation approximately five times more than with SLS. To test the possibility of adequate SLS simulations, a platform based on the lattice Boltzmann method (LBM), previously developed and applied to model the SLM process, was used. In addition, the possibility of modeling similar processes (SLM, SLS, and SLS/SLM) using the same modeling tool on the same modeling platform is important. The objective of this paper is to present a model of the SLS process and confirmation of the possibility of using LBM for simulation of the SLS process. A simulation of SLS and SLM with the use of LBM, and qualitative comparison of the results of these simulation for bioactive glass 45S5 is the basis of the methodology used for the research. The simulation presented in this study confirmed the possibility of simulating SLM, SLS processes using common principles, approaches, and models. The results of SLS process simulations can be treated as qualitative and require further verification, whereas SLM simulations have been previously verified. The application of the lattice Boltzmann method, which is a computational fluid dynamics (CFD) method, opens the possibility of using almost every CFD method for the simulation of several kinds of SLS, and can accelerate research in this field.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103009"},"PeriodicalIF":3.5,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001230/pdfft?md5=b61dc3f5302cc0d90dcb32dd6b0b282a&pid=1-s2.0-S1569190X24001230-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Umar Javed , Nadeem Javaid , Nabil Alrajeh , Muhammad Shafiq , Jin-Ghoo Choi
{"title":"Mutual authentication enabled trust model for vehicular energy networks using Blockchain in Smart Healthcare Systems","authors":"Muhammad Umar Javed , Nadeem Javaid , Nabil Alrajeh , Muhammad Shafiq , Jin-Ghoo Choi","doi":"10.1016/j.simpat.2024.103006","DOIUrl":"10.1016/j.simpat.2024.103006","url":null,"abstract":"<div><p>Healthcare systems face critical issues worldwide such as data breaches, lack of interoperability and inefficiencies in patient data management. These challenges hinder the quality of care and patient outcomes. The increasing adoption of Electric Vehicles (EVs) in Smart Healthcare Systems (SHSs) has brought about new security and privacy challenges. EVs, including electric ambulances, rely on communication networks to exchange critical information and perform energy trading. However, the open nature of these networks makes them vulnerable to various attacks, such as false information dissemination and collusion attacks. In the recent years, Blockchain (BC) technology has emerged as a transformative solution for various industries, including healthcare. The integration of BC in healthcare systems offers enhanced security, transparency and efficiency in managing patient data and other critical information. The paper introduces a data-oriented trust paradigm that is facilitated by revocation transparency. In order to enable the present EVs operating in a SHS to realize their full potential, the model aims to successfully manage security, privacy, storage and other issues. The electric ambulance, an integral part of an SHS, is a special type of EV, which is considered in the study. The proposed approach employs the Password Authenticated Key Exchange by Juggling (J-PAKE) mechanism to provide mutual authentication across distinct entities inside a SHS. Moreover, the Real-time Message Content Validation (RMCV) approach precludes collusion attacks by performing a message credibility check. Moving ahead, anonymization of reputation data is performed via K-anonymity algorithm. Restrictions on the identification of the consistent patterns seen in the reputation data serve to avoid privacy leaks. Additionally, a Proof of Revocation (PoR) technique helps to provide revocation transparency. The Inter Planetary File System (IPFS), a decentralized storage system, houses the vehicle data in order to lessen the BC storage problem. Hashes of the data recorded in IPFS are also uploaded to the immutable BC ledger to prevent disputes. Moreover, IPFS and Cuckoo Filters (CFs) are used to enhance the efficiency of the system. In terms of execution time, data size and storage overhead, the performance evaluation is carried out to assess the proposed model’s efficiency. The simulation results show the execution time for a vast number of messages to be less than 0.6 s. Moreover, K-anonymity ensures storage overhead reduction of almost 35%–40%. Finally, Oyente is used to identify bugs in the smart contract. Overall, it is determined that the proposed approach is effective in establishing mutual authentication, revocation transparency and trust.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103006"},"PeriodicalIF":3.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Don Nalin Dharshana Jayaratne , Suraj Harsha Kamtam , Siraj Ahmed Shaikh , Muhamad Azfar Ramli , Qian Lu , Rakhi Manohar Mepparambath , Hoang Nga Nguyen , Abdur Rakib
{"title":"A simulation framework for automotive cybersecurity risk assessment","authors":"Don Nalin Dharshana Jayaratne , Suraj Harsha Kamtam , Siraj Ahmed Shaikh , Muhamad Azfar Ramli , Qian Lu , Rakhi Manohar Mepparambath , Hoang Nga Nguyen , Abdur Rakib","doi":"10.1016/j.simpat.2024.103005","DOIUrl":"10.1016/j.simpat.2024.103005","url":null,"abstract":"<div><p>Human-initiated disruptions such as cyberattacks on connected vehicles have the potential to cause cascading failures in transport systems, leading to systemic risks. ‘ISO/SAE 21434:2021 Road vehicles - Cybersecurity engineering’ is the current standard for risk management of road vehicles. However, the threat analysis and risk assessment framework given in the standard focuses on asset-level analysis and assessment. Hence, this study develops a novel simulation-based framework to perform threat analysis and risk assessment on connected vehicles from a transport network perspective. The proposed framework is developed based on the ISO/SAE 21434 threat analysis and risk assessment methodology. We demonstrate the applicability and usefulness of the framework through a remote attack via the cellular network on the in-vehicle communication bus system of a connected vehicle to show the potential impacts on the transport network. Based on the findings of our case studies, we exemplify how cyberattacks on individual system components of a connected vehicle have the potential to cause systemic failures.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103005"},"PeriodicalIF":3.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001199/pdfft?md5=8fc9b5419afcd3b7fa0b3826ddccdaf9&pid=1-s2.0-S1569190X24001199-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An extended cellular automation model for bicycles with group and retrograde behaviors at signalized intersections","authors":"Ying-Xu Rui , Jun-Qing Shi , Peng Liao , Jian Zhang , Tianli Tang","doi":"10.1016/j.simpat.2024.103004","DOIUrl":"10.1016/j.simpat.2024.103004","url":null,"abstract":"<div><p>The rise of shared bicycles has increased the demand for group riding, integrating bicycles into social groups. Additionally, retrograde riding, where cyclists travel against the designated direction, is a common behavior observed in bicycle flows. The interaction and self-organization phenomenon of group and retrograde behaviors are complex, significantly impacting traffic efficiency. This paper develops a two-dimensional Extended Moore Neighborhood and constructs state-updating rules for regular riding, group riding and retrograde riding. Each rule comprises a psychological decision layer and a physical execution layer, forming a cellular automaton model for group and retrograde bicycles. Field experiments are conducted to calibrate the model parameters and verify the behavioral characteristics. Finally, we execute numerical simulations at a signalized intersection to explore the coupling effects of group and retrograde behaviors on self-organization within the bicycle flow and the traffic capacity. The results indicate that group behavior increases queue length while reducing start wave speed and expansion degree. Retrograde behavior intensifies the negative effects on bicycle flow. These findings provide insights for managing both forward and retrograde bicycle flows.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103004"},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mesoscopic V2X simulation framework to enhance simulation performance","authors":"Tamás Ormándi, Balázs Varga","doi":"10.1016/j.simpat.2024.103003","DOIUrl":"10.1016/j.simpat.2024.103003","url":null,"abstract":"<div><p>The rapid evolution of vehicular communication has led to numerous new algorithms and applications based on this technology. Neglecting issues arising from wireless communication, such as the loss of information and delays, can result in problems such as reduced performance or compromised safety. However, while simulating V2X demands significant computational resources, it proves unsuitable for complex testing setups, including mixed-reality testing. This paper enhances V2X simulation by relying on an ecosystem based on SUMO, OMNeT++, Veins, and INET simulation tools. The proposed novel method introduces mesoscopic simulation in Vehicular Ad-hoc Networks to increase simulation performance to a level where real-time behavior is achievable. Meanwhile, it can also be beneficial in the acceleration of regular simulations. The presented solution introduces Meso nodes that are capable of aggregating communication across an entire traffic area, facilitated by a neural network function approximator. Results showed substantial performance gain while simulation accuracy was preserved.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103003"},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24001175/pdfft?md5=42364717b342c8e9528e19a5ec83b1f9&pid=1-s2.0-S1569190X24001175-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Duarte Sampaio de Almeida , Fernando Brito e Abreu , Inês Boavida-Portugal
{"title":"Agent-based simulation of non-urgent egress from mass events in open public spaces","authors":"Duarte Sampaio de Almeida , Fernando Brito e Abreu , Inês Boavida-Portugal","doi":"10.1016/j.simpat.2024.103002","DOIUrl":"10.1016/j.simpat.2024.103002","url":null,"abstract":"<div><p>Public mass events require thorough planning on allocating resources such as paramedics, police officers, urban cleaning teams, and their equipment (ambulances, patrol cars, garbage collection trucks, and other urban cleaning vehicles). Testing different scenarios of event venue layout and crowd behavior at the end of an event might be useful to plan the event and said resource allocation.</p><p>Our main objective is to model the non-urgent egress of participants at the end of an event, with possible applications for event management. That is when some resources are released (police and paramedics) and others are requested (urban cleaning teams).</p><p>Using the agent-based GAMA platform, we implemented a spatially explicit simulation model upon an extension of the Social Force Model that considers group behavior, and a novel implementation of the “social retention” phenomenon, to simulate non-urgent egress from public space mass gathering events. Focus groups with architecture, geography, and urban ergonomics experts were conducted for face validation and improvement of the model.</p><p>We present the outcome of a series of simulations of a scenario mimicking a real-life music event that took place in a square in downtown Lisbon, Portugal. Cell phone data captured during the event was used to calibrate the model. We analyzed model performance when the number of pedestrian agents increases, to assess the feasibility of using our approach in participatory discussions with stakeholders responsible for resources management.</p><p>On average, the egress evolution obtained in the simulations fit well with the evolution of cell phone counts captured during the event. The behavior of groups of agents evidenced real-life phenomena, such as the persistence of group cohesion and repulsion interactions (both with architectural obstacles and other agents).</p><p>Model performance degradation with the increasing number of agents may hamper the usage of this model/platform for participatory meetings, due to the incurred delay in obtaining results. To mitigate this problem, we plan to explore parallelization strategies for agent-based simulation, such as using GPUs.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 103002"},"PeriodicalIF":3.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}