Yangjian He , Qingxin Shi , Libi Fu , Qiyi Chen , Chenxin Shen , Yu Zhang , Yongqian Shi , Jacqueline T.Y. Lo
{"title":"Application of the multi-grid modelling method to pedestrian social group dynamics through a bottleneck","authors":"Yangjian He , Qingxin Shi , Libi Fu , Qiyi Chen , Chenxin Shen , Yu Zhang , Yongqian Shi , Jacqueline T.Y. Lo","doi":"10.1016/j.simpat.2024.103049","DOIUrl":null,"url":null,"abstract":"<div><div>There is a high proportion of social groups in crowds. The influence of social groups on crowd mobility is particularly evident in emergency situations and in confined movement environments. However, studies on the characteristics of social group movement through a bottleneck with different widths are limited. Therefore, the computation and simulation are performed in a corridor with a bottleneck involving individuals and three types of groups (namely two-person, three-person and four-person groups) using a modified multi-grid model. The original multi-grid model is modified by introducing interactions between pedestrians, avoidance behavior and group behavior, and validated by data from a controlled experiment. It is found that the group configuration can be adjusted to the changing scenarios during the passing movement. The movement efficiency and level of walking comfort for pedestrians are significantly improved in wider bottlenecks. Passing efficiency is evidently increased and congestion is reduced, when social groups occupy a large proportion of the crowd in a narrow bottleneck. These numerical findings may provide new insights for analyzing nonlinear pedestrian social group dynamics.</div></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"139 ","pages":"Article 103049"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001631","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
There is a high proportion of social groups in crowds. The influence of social groups on crowd mobility is particularly evident in emergency situations and in confined movement environments. However, studies on the characteristics of social group movement through a bottleneck with different widths are limited. Therefore, the computation and simulation are performed in a corridor with a bottleneck involving individuals and three types of groups (namely two-person, three-person and four-person groups) using a modified multi-grid model. The original multi-grid model is modified by introducing interactions between pedestrians, avoidance behavior and group behavior, and validated by data from a controlled experiment. It is found that the group configuration can be adjusted to the changing scenarios during the passing movement. The movement efficiency and level of walking comfort for pedestrians are significantly improved in wider bottlenecks. Passing efficiency is evidently increased and congestion is reduced, when social groups occupy a large proportion of the crowd in a narrow bottleneck. These numerical findings may provide new insights for analyzing nonlinear pedestrian social group dynamics.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.