{"title":"Vibration Control of Vertical Turbine Pump by Optimization of Vane Pitch Tolerances of an Impeller Using Statistical Techniques","authors":"Ravindra S. Birajdar, A. Keste, S. Gawande","doi":"10.32604/sv.2021.017000","DOIUrl":"https://doi.org/10.32604/sv.2021.017000","url":null,"abstract":"The objective of the study is to find the tolerance on vane pitch dimensions of a Vertical Turbine (VT) pump impeller. For this purpose, the study is divided into two parts viz. to find the critical hydraulic eccentricity of a VT pump impeller by way of numerical simulations and design of experiments to find the vane pitch tolerance using critical hydraulic eccentricity. The effect of impeller vane pitch deviations on hydraulic unbalance is examined for a vertical turbine pump using Design of Experiments (DOE). A suitable orthogonal matrix has been selected with vane pitch at different axial locations of an impeller as the control factors. Hydraulic eccentricity, which is the output of the DOE experiments is analyzed using S/N ratio, ANOM and regression analysis to find the significant control factor effecting the hydraulic unbalance and hence vibrations. The vane pitch deviation at outlet and inlet of impeller shroud geometry are found to be the most critical factor affecting the pump vibrations.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"306 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79850628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Heydarnia, I. Kiselev, M. M. Ermolaev, S. Nikolaev
{"title":"Dynamic Modeling of the Feed Drive System of a CNC Metal Cutting Machine","authors":"H. Heydarnia, I. Kiselev, M. M. Ermolaev, S. Nikolaev","doi":"10.32604/SV.2021.04410","DOIUrl":"https://doi.org/10.32604/SV.2021.04410","url":null,"abstract":"Studying the vibrational behavior of feed drive systems is important for enhancing the structural performance of computer numerical control (CNC) machines. The preload on the screw and nut position have a great influence on the vibration characteristics of the feed drive as two very important operational conditions. Rotational acceleration of the screw also affects the performance of the CNC feed drive when machining small parts. This paper investigates the influence of preload and nut position on the vibration characteristics of the feed drive system of a CNC metal cutting machine in order to be able to eliminate an observed resonance occurred at high rotational speeds of the screw, corresponding to high feed rates. Additionally, rational structural parameters of the feed drive system are selected in order to increase the rotational acceleration for improving the performance of the CNC machine. Experiments and analyses showed that by selecting specific parameters of feed drive system and simultaneously applying a certain value of preload, a 97% increase in rotational acceleration and 30% time reduction considering the vibration resistance at high rotational speeds can be achieved.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"12 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81783109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Static and Dynamic Analyses of Spliced Column","authors":"Deepak Kumar Singh","doi":"10.32604/sv.2021.011627","DOIUrl":"https://doi.org/10.32604/sv.2021.011627","url":null,"abstract":"The analysis of spliced column has been carried out to detect optimum location of providing splices in the column. In the present work, static and dynamic (free vibration) analyses of spliced column have been done by randomising the location of splicing. A symmetrical four storey steel framed building has been modelled, analysed and designed for loads (dead, live and earthquake loads) recommended by Indian Codal provisions using Staad.Pro. The critical column at each floor level is identified based on axial force (AF), bending moment (BM) and shear force (SF). The total 16 models of spliced columns have been designed and then modelled in a 3D CAD Design tool (SOLIDWORKS) and then imported in the finite element tool (ANSYSWorkbench 14.0) for detailed analysis. The variation of stress, strain and deflection of the spliced column are shown in the form of contour. Further, the modal analysis is performed to determine the natural frequencies. The results of static and dynamic analyses are compared for each modelled spliced column to obtain the optimum location for providing splices in the column. The dynamic analysis of spliced column is of utmost importance in the region where dynamic loadings like earthquake, cyclones etc. are more frequent, and mere static analysis does not account for the safety of the structure. This study will help the engineers to select directly the optimum size and location of the splices in the column of a steel framed building.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"20 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81929065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Çuvalci, F. Ünker, Turgut Batuhan Baturalp, Utku Gülbulak, A. Ertas
{"title":"Modal Control of Cantilever Beam Using a Gyrostabilizer","authors":"O. Çuvalci, F. Ünker, Turgut Batuhan Baturalp, Utku Gülbulak, A. Ertas","doi":"10.32604/sv.2021.015705","DOIUrl":"https://doi.org/10.32604/sv.2021.015705","url":null,"abstract":"In this paper, an experimental model of a horizontal cantilever beam with a rotating/oscillating attached to the shaker for harmonic excitation at the one end and a gyrostabilizer at the other end is built to verify the equations of the Lagrangian model. The primary focus of the study was to investigate the parameters of excitation amplitude, natural frequency, rotating mass (disk mass), and disk speed of gyro that would minimize the amplitude of the beam to identify these effects. Numerical and experimental results indicate that the angular momentum of the gyrostabilizer is the most effective parameter in the reduction of beam displacement.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"2 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74226621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kenneth R. Podolak, Vihan A.W. Wickramasinghe, Gareth A. Mansfield, Alex M. Tuller
{"title":"Manipulating Chladni Patterns of Ferromagnetic Materials by an External Magnetic Field","authors":"Kenneth R. Podolak, Vihan A.W. Wickramasinghe, Gareth A. Mansfield, Alex M. Tuller","doi":"10.32604/sv.2021.015008","DOIUrl":"https://doi.org/10.32604/sv.2021.015008","url":null,"abstract":"Ernst Chladni is called the father of acoustics for his work, which includes investigating patterns formed by vibrating plates. Understanding these patterns helps research involving standing waves and other harmonic behaviors, including studies of single electron orbits in atoms. Our experiment vibrates circular plates which result in well-known patterns. Alternatively to traditional experiments that used sand or salt, we use magnetic materials, namely iron filings and nickel powder. We then manipulate the patterns by applying a localized external magnetic field to one of the rings that moves a segment of the magnetic material in that ring to the next inner ring. The results show a significant decrease in magnetic field necessary to move the magnetic material at higher frequencies as well as a significant decrease in the magnetic field required to move the magnetic material as nickel powder is substituted for iron filings while keeping the mass constant.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"188 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83053105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Hallal, M. Fakih, H. Damerji, M. Hammoud, Mehdi Chouman
{"title":"Experimental Modal Damping Identification of a Mechanical Structure Using Video Magnification Technique","authors":"J. Hallal, M. Fakih, H. Damerji, M. Hammoud, Mehdi Chouman","doi":"10.32604/sv.2021.015293","DOIUrl":"https://doi.org/10.32604/sv.2021.015293","url":null,"abstract":"","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"71 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81842318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Variani, Masoumeh Ghorbanide, S. Zare, Saeid Ahmadi, Zahra Hashemi
{"title":"Reducing Occupational Noise Propagated from Centrifugal Fan through Dissipative Silencers: A Field Study","authors":"A. Variani, Masoumeh Ghorbanide, S. Zare, Saeid Ahmadi, Zahra Hashemi","doi":"10.32604/SV.2021.08930","DOIUrl":"https://doi.org/10.32604/SV.2021.08930","url":null,"abstract":"Acoustic performance of dissipative silencer was evaluated to determine the effectiveness of perforated duct porosity and absorbent material density in reducing occupational noise exposure propagated from centrifugal fan. Design charts were applied to predict noise reduction and length of a dissipative silencer. Dissipative silencers with various punched duct porosity (14%, 30% and 40%) and sound absorbent density (80 Kg/m, 120 Kg/m, and 140 Kg/m) were designed and fabricated. According to ISO9612 and ISO11820, noise level was measured before and after installing all nine test silencers at fixed workstations around the discharge side of a centrifugal fan in a manufacturing plant. On average, the noise level at the discharge side of a fan without silencer was measured to be 93.6 dBA, whereas it was significantly mitigated by 67.4 dBA to 70.1 dBA after installing all silencers. Dynamic insertion loss for a dissipative silencer with 100 cm length was predicted to be 27.9 dB, which was in agreement with experimental ones. Although, there was no significant differences between insertion loss of silencers, the one with 30% porosity and 120 Kg/m rock wool density had the highest insertion loss of 26.2 dBA. Dissipative silencers noticeably reduced centrifugal fan noise exposures. Increasing sound absorbent density and duct porosity up to a certain limit could probably be effective in noise reduction of dissipative silencers.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"7 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86830245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prediction and Limitations of Noise Maps Developed for Heterogeneous Urban Road Traffic Condition: A Case Study of Surat City, India","authors":"Dipeshkumar R. Sonaviya, B. Tandel","doi":"10.32604/SV.2021.010715","DOIUrl":"https://doi.org/10.32604/SV.2021.010715","url":null,"abstract":"Road traffic noise pollution has been recognized as a serious issue which affects human health as well as affects urban regions. Noise maps are very beneficial to identify the impact of noise pollution. A noise mapping study performed to study the propagation of noise in tier-II city along with field measurements. The noise maps are developed using a computer simulation model (SoundPLAN essential 4.0 software). The noise prediction models like U.K’s CoRTN, Germany’s RLS-90, and their modified versions, which can be used for homogenous road traffic conditions, cannot be successfully applied in heterogeneous road traffic conditions of India. In developing country like India, road traffic noise pollution depends on the composition of heterogeneous traffic volume, variance in road geometrical, honking conditions, un-authorized parking, and varying density of the building on either side of the road. These traffic compositions contain vehicles, which have different sizes, speeds variations, a different dimension of vehicles. Because of fluctuating speeds, lack of lane disciplines, and un-authorized parking on main road lanes, honking events becomes inevitable, which changes and affects the urban soundscape of nations like India. Analysis of noise maps showed that horn honking due to un-authorized parked vehicles contributed an additional increase up to 11 dB (A) noise, which is quite significant.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"1 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83562006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Duffing Oscillator’s Vibration Control under Resonance with a Negative Velocity Feedback Control and Time Delay","authors":"Y. A. Amer, Taher A. Bahnasy","doi":"10.32604/sv.2021.014358","DOIUrl":"https://doi.org/10.32604/sv.2021.014358","url":null,"abstract":"An externally excited Duffing oscillator under feedback control is discussed and analyzed under the worst resonance case. Multiple time scales method is applied for this system to find analytic solution with the existence and nonexistence of the time delay on control loop. An appropriate stability analysis is also performed and appropriate choices for the feedback gains and the time delay are found in order to reduce the amplitude peak. Different response curves are involved to show and compare controller effects. In addition, analytic solutions are compared with numerical approximation solutions using Rung-Kutta method of fourth order.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"278 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83077173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Askari, A. Salehi Sahl Abadi, Alimardan Alinia, M. Pourjaafar, Aref Honairi Haghighi, Elham Akhlaghi Pirposhteh
{"title":"Prioritizing and Providing Sound Pollution Control Strategies at the CPF of North Azadegan Oilfield Project","authors":"A. Askari, A. Salehi Sahl Abadi, Alimardan Alinia, M. Pourjaafar, Aref Honairi Haghighi, Elham Akhlaghi Pirposhteh","doi":"10.32604/sv.2021.016662","DOIUrl":"https://doi.org/10.32604/sv.2021.016662","url":null,"abstract":"","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"65 1","pages":""},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73225529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}