A. Variani, Masoumeh Ghorbanide, S. Zare, Saeid Ahmadi, Zahra Hashemi
{"title":"利用耗散消声器降低离心式通风机职业性噪声的现场研究","authors":"A. Variani, Masoumeh Ghorbanide, S. Zare, Saeid Ahmadi, Zahra Hashemi","doi":"10.32604/SV.2021.08930","DOIUrl":null,"url":null,"abstract":"Acoustic performance of dissipative silencer was evaluated to determine the effectiveness of perforated duct porosity and absorbent material density in reducing occupational noise exposure propagated from centrifugal fan. Design charts were applied to predict noise reduction and length of a dissipative silencer. Dissipative silencers with various punched duct porosity (14%, 30% and 40%) and sound absorbent density (80 Kg/m, 120 Kg/m, and 140 Kg/m) were designed and fabricated. According to ISO9612 and ISO11820, noise level was measured before and after installing all nine test silencers at fixed workstations around the discharge side of a centrifugal fan in a manufacturing plant. On average, the noise level at the discharge side of a fan without silencer was measured to be 93.6 dBA, whereas it was significantly mitigated by 67.4 dBA to 70.1 dBA after installing all silencers. Dynamic insertion loss for a dissipative silencer with 100 cm length was predicted to be 27.9 dB, which was in agreement with experimental ones. Although, there was no significant differences between insertion loss of silencers, the one with 30% porosity and 120 Kg/m rock wool density had the highest insertion loss of 26.2 dBA. Dissipative silencers noticeably reduced centrifugal fan noise exposures. Increasing sound absorbent density and duct porosity up to a certain limit could probably be effective in noise reduction of dissipative silencers.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"7 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Occupational Noise Propagated from Centrifugal Fan through Dissipative Silencers: A Field Study\",\"authors\":\"A. Variani, Masoumeh Ghorbanide, S. Zare, Saeid Ahmadi, Zahra Hashemi\",\"doi\":\"10.32604/SV.2021.08930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic performance of dissipative silencer was evaluated to determine the effectiveness of perforated duct porosity and absorbent material density in reducing occupational noise exposure propagated from centrifugal fan. Design charts were applied to predict noise reduction and length of a dissipative silencer. Dissipative silencers with various punched duct porosity (14%, 30% and 40%) and sound absorbent density (80 Kg/m, 120 Kg/m, and 140 Kg/m) were designed and fabricated. According to ISO9612 and ISO11820, noise level was measured before and after installing all nine test silencers at fixed workstations around the discharge side of a centrifugal fan in a manufacturing plant. On average, the noise level at the discharge side of a fan without silencer was measured to be 93.6 dBA, whereas it was significantly mitigated by 67.4 dBA to 70.1 dBA after installing all silencers. Dynamic insertion loss for a dissipative silencer with 100 cm length was predicted to be 27.9 dB, which was in agreement with experimental ones. Although, there was no significant differences between insertion loss of silencers, the one with 30% porosity and 120 Kg/m rock wool density had the highest insertion loss of 26.2 dBA. Dissipative silencers noticeably reduced centrifugal fan noise exposures. Increasing sound absorbent density and duct porosity up to a certain limit could probably be effective in noise reduction of dissipative silencers.\",\"PeriodicalId\":49496,\"journal\":{\"name\":\"Sound and Vibration\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sound and Vibration\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.32604/SV.2021.08930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/SV.2021.08930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Reducing Occupational Noise Propagated from Centrifugal Fan through Dissipative Silencers: A Field Study
Acoustic performance of dissipative silencer was evaluated to determine the effectiveness of perforated duct porosity and absorbent material density in reducing occupational noise exposure propagated from centrifugal fan. Design charts were applied to predict noise reduction and length of a dissipative silencer. Dissipative silencers with various punched duct porosity (14%, 30% and 40%) and sound absorbent density (80 Kg/m, 120 Kg/m, and 140 Kg/m) were designed and fabricated. According to ISO9612 and ISO11820, noise level was measured before and after installing all nine test silencers at fixed workstations around the discharge side of a centrifugal fan in a manufacturing plant. On average, the noise level at the discharge side of a fan without silencer was measured to be 93.6 dBA, whereas it was significantly mitigated by 67.4 dBA to 70.1 dBA after installing all silencers. Dynamic insertion loss for a dissipative silencer with 100 cm length was predicted to be 27.9 dB, which was in agreement with experimental ones. Although, there was no significant differences between insertion loss of silencers, the one with 30% porosity and 120 Kg/m rock wool density had the highest insertion loss of 26.2 dBA. Dissipative silencers noticeably reduced centrifugal fan noise exposures. Increasing sound absorbent density and duct porosity up to a certain limit could probably be effective in noise reduction of dissipative silencers.
期刊介绍:
Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications.
Papers are sought that contribute to the following general topics:
-broad-based interests in noise and vibration-
dynamic measurements-
structural analysis-
computer-aided engineering-
machinery reliability-
dynamic testing