Static and Dynamic Analyses of Spliced Column

IF 0.9 Q4 ACOUSTICS
Deepak Kumar Singh
{"title":"Static and Dynamic Analyses of Spliced Column","authors":"Deepak Kumar Singh","doi":"10.32604/sv.2021.011627","DOIUrl":null,"url":null,"abstract":"The analysis of spliced column has been carried out to detect optimum location of providing splices in the column. In the present work, static and dynamic (free vibration) analyses of spliced column have been done by randomising the location of splicing. A symmetrical four storey steel framed building has been modelled, analysed and designed for loads (dead, live and earthquake loads) recommended by Indian Codal provisions using Staad.Pro. The critical column at each floor level is identified based on axial force (AF), bending moment (BM) and shear force (SF). The total 16 models of spliced columns have been designed and then modelled in a 3D CAD Design tool (SOLIDWORKS) and then imported in the finite element tool (ANSYSWorkbench 14.0) for detailed analysis. The variation of stress, strain and deflection of the spliced column are shown in the form of contour. Further, the modal analysis is performed to determine the natural frequencies. The results of static and dynamic analyses are compared for each modelled spliced column to obtain the optimum location for providing splices in the column. The dynamic analysis of spliced column is of utmost importance in the region where dynamic loadings like earthquake, cyclones etc. are more frequent, and mere static analysis does not account for the safety of the structure. This study will help the engineers to select directly the optimum size and location of the splices in the column of a steel framed building.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"20 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/sv.2021.011627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of spliced column has been carried out to detect optimum location of providing splices in the column. In the present work, static and dynamic (free vibration) analyses of spliced column have been done by randomising the location of splicing. A symmetrical four storey steel framed building has been modelled, analysed and designed for loads (dead, live and earthquake loads) recommended by Indian Codal provisions using Staad.Pro. The critical column at each floor level is identified based on axial force (AF), bending moment (BM) and shear force (SF). The total 16 models of spliced columns have been designed and then modelled in a 3D CAD Design tool (SOLIDWORKS) and then imported in the finite element tool (ANSYSWorkbench 14.0) for detailed analysis. The variation of stress, strain and deflection of the spliced column are shown in the form of contour. Further, the modal analysis is performed to determine the natural frequencies. The results of static and dynamic analyses are compared for each modelled spliced column to obtain the optimum location for providing splices in the column. The dynamic analysis of spliced column is of utmost importance in the region where dynamic loadings like earthquake, cyclones etc. are more frequent, and mere static analysis does not account for the safety of the structure. This study will help the engineers to select directly the optimum size and location of the splices in the column of a steel framed building.
拼接柱的静力与动力分析
对拼接柱进行了分析,以确定在柱内提供拼接的最佳位置。在本工作中,通过随机拼接位置对拼接柱进行了静力和动力(自由振动)分析。一个对称的四层钢框架建筑已经建模,分析和设计荷载(死荷载,活荷载和地震荷载)由印度Codal规定使用Staad.Pro推荐。根据轴力(AF)、弯矩(BM)和剪力(SF)确定各层的临界柱。对拼接柱共16个模型进行了设计,然后在三维CAD设计工具(SOLIDWORKS)中进行建模,然后导入有限元工具(ANSYSWorkbench 14.0)进行详细分析。剪接柱的应力、应变和挠度变化以等值线图的形式表示。此外,进行模态分析以确定固有频率。通过对每个模型拼接柱的静力分析和动力分析结果进行比较,得出了在柱内提供拼接的最佳位置。在地震、旋风等动力荷载较为频繁的地区,单纯的静力分析不足以保证结构的安全性,对叠合柱进行动力分析至关重要。该研究将有助于工程师直接选择钢框架建筑柱中接头的最佳尺寸和位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sound and Vibration
Sound and Vibration 物理-工程:机械
CiteScore
1.50
自引率
33.30%
发文量
33
审稿时长
>12 weeks
期刊介绍: Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications. Papers are sought that contribute to the following general topics: -broad-based interests in noise and vibration- dynamic measurements- structural analysis- computer-aided engineering- machinery reliability- dynamic testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信