Structural Design of Tall and Special Buildings最新文献

筛选
英文 中文
Optimal parameters for tall buildings with a single viscously damped outrigger considering earthquake and wind loads 考虑地震和风荷载的单支腿粘阻尼高层建筑的最优参数
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2023-01-25 DOI: 10.1002/tal.2003
Faisal Nissar Malik, C. Kolay
{"title":"Optimal parameters for tall buildings with a single viscously damped outrigger considering earthquake and wind loads","authors":"Faisal Nissar Malik, C. Kolay","doi":"10.1002/tal.2003","DOIUrl":"https://doi.org/10.1002/tal.2003","url":null,"abstract":"Tall buildings suffer from low inherent damping and high flexibility. Therefore, a core‐outrigger system is often used to stiffen such buildings. A modified form, known as the damped outrigger system, wherein vertically oriented dampers are installed between outriggers and perimeter columns, has been recently developed to supplement the damping. This paper studies the efficacy of a viscously damped outrigger system through dynamic analysis of a 60‐story tall building subjected to nonconcurrent earthquake and wind excitations. Two ground motion sets (100 accelerograms) are used for the former and wind tunnel test data for the latter. Effects of three building parameters, namely, (i) the core‐to‐column stiffness ratio, (ii) the outrigger location, and (iii) the damper size, on the dynamic characteristics and seismic and wind responses are evaluated. Effects of damper nonlinearity on seismic and wind responses are also investigated considering energy‐equivalent nonlinear viscous dampers. Finally, the optimum values of these parameters are determined. For example, the optimum outrigger location is found to be between 0.6H to 0.9H , where H is the height of the building. The results also show that the damped outrigger system significantly outperforms the conventional one for seismic excitation, and it is very effective in reducing the wind‐induced floor accelerations, provided the parameters are chosen appropriately.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42057463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Issue Information 问题信息
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2023-01-10 DOI: 10.1002/tal.1951
{"title":"Issue Information","authors":"","doi":"10.1002/tal.1951","DOIUrl":"https://doi.org/10.1002/tal.1951","url":null,"abstract":"No abstract is available for this article.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44648238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Size effect of circular concrete‐filled stainless steel tubular short columns under axial compression 轴压作用下不锈钢圆钢管混凝土短柱的尺寸效应
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2023-01-01 DOI: 10.1002/tal.1983
Xiaolong Liu, Senping Wang, Bo Yuan
{"title":"Size effect of circular concrete‐filled stainless steel tubular short columns under axial compression","authors":"Xiaolong Liu, Senping Wang, Bo Yuan","doi":"10.1002/tal.1983","DOIUrl":"https://doi.org/10.1002/tal.1983","url":null,"abstract":"Concrete‐filled stainless steel tube (CFSST) members combine the advantages of stainless steel materials and concrete‐filled steel tube (CFST) members. Therefore, it has a broad range of applications than CFST members in the marine environment and other scenarios requiring great durability and corrosion resistance. However, there are limited researches on the large‐sized CFSST members. In this paper, 30 circular CFSST members with varying steel ratios (3.7% ≤ α ≤ 10.3%), diameters (500 mm ≤ D ≤ 900 mm), and strength of concrete ( fcu = 40 MPa, 50 MPa) are studied on the size effect under axial compression. For peak axial stress, peak axial strain, and composite elastic modulus, size effects are investigated. According to the results, the peak axial stress and peak axial strain of the members increase with the increase in diameter. The modulus of composite elasticity essentially stays constant as the diameter increases, showing that there is no obvious size effect on the composite elastic modulus. The size effect of peak axial stress and peak axial strain is influenced by the steel ratio. Increasing the steel ratio tended to decrease the size effect. According to the generated data, it was found that the current codes of Chinese and European underestimate the ultimate bearing capacity of CFSST short columns significantly. To this end, the resistances of the large‐sized austenitic CFSST columns with a low steel ratio are well predicted by the proposed design model after being modified, based on GB 50936‐2014 and EN 1994‐1‐1 design codes.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41715281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Experimental evaluation of composite and non‐composite columns and braces in special concentrically braced frames 特殊同心支撑框架中复合和非复合柱和支撑的试验评估
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2022-12-29 DOI: 10.1002/tal.2002
S. Ebrahimi, S. R. Mirghaderi, S. M. Zahrai
{"title":"Experimental evaluation of composite and non‐composite columns and braces in special concentrically braced frames","authors":"S. Ebrahimi, S. R. Mirghaderi, S. M. Zahrai","doi":"10.1002/tal.2002","DOIUrl":"https://doi.org/10.1002/tal.2002","url":null,"abstract":"Hollow structural section (HSS) and concrete‐filled tube (CFT) cross‐sections have been widely employed in the columns and braces of special concentrically braced frames (SCBFs). Square‐HSS cross‐section widely used in multistory frames is filled with concrete and converted to square‐CFT cross‐section to enhance the behavior of this cross‐section. However, some investigations indicated that circular‐HSS cross‐section filled with concrete (circular‐CFT) showed better behavior in comparison with square‐CFT cross‐section due to more uniform and larger concrete confinement in circular‐CFT cross‐section. The current study was experimentally undertaken to evaluate (1) the seismic performance and the global and local hysteresis responses of HSS and CFT members with various cross‐section shapes from initial elastic range to collapse in the system level of multistory SCBFs, (2) the behavioral differences between square cross‐section and circular cross‐section, and (3) the behavioral differences between HSS cross‐sections and CFT cross‐sections employed in the columns and braces of SCBFs. Four full‐scale one‐bay, two‐story SCBFs with four various cross‐sections, namely, square‐HSS, circular‐HSS, square‐CFT, and circular‐CFT, for columns and braces were subjected to cyclic lateral loading. Evaluating base shear–roof drift hysteretic loops of SCBF specimens demonstrated that SCBF specimens with CFT columns and braces (CFT‐SCBFs) experienced respectively around 107%, 58%, 28%, and 152% higher stiffness, post‐yielding and post‐buckling strengths, ductility, and energy dissipation capacity than SCBF specimens with HSS columns and braces (HSS‐SCBF). In addition, the experimental observations indicated that CFT braces experienced local buckling initiation, crack initiation, and fracture at respectively 2.22, 2.35, and 2.32 times of roof drifts of those exhibited by HSS braces. Moreover, assessing braces with various cross‐sections indicated that CFT braces showed an increase in compression strength, post‐buckling strength, compression axial deformation, and out‐of‐plane buckling approximately by 83%, 152%, 127%, and 100%, respectively, in comparison with HSS braces. Finally, square‐HSS/CFT braces sustained rupture propagation better than circular‐HSS/CFT braces.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48570291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Seismic analysis and connection optimization of the side column on modular prefabricated four‐sided connected composite shear wall 组合式预制四边连接组合剪力墙侧柱抗震分析及连接优化
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2022-12-14 DOI: 10.1002/tal.2001
Tong Ou, Can Mei, Jihua Mao, Dayang Wang
{"title":"Seismic analysis and connection optimization of the side column on modular prefabricated four‐sided connected composite shear wall","authors":"Tong Ou, Can Mei, Jihua Mao, Dayang Wang","doi":"10.1002/tal.2001","DOIUrl":"https://doi.org/10.1002/tal.2001","url":null,"abstract":"A modular prefabricated four‐side connected composite (MPFC) shear wall that consists of a composite shear wall modular (CSWM) and steel frame boundary elements is proposed. First, the finite element model (FEM) of the MPFC shear wall, which considers a plastic‐damage constitutive model of both concrete and steel materials, is established based on the finite‐element software ABAQUS. Second, the FEM accuracy of the MPFC shear wall is verified by the experimental results of a modular prefabricated two‐sided connected buckling‐restrained (MTB) steel plate shear wall. Third, the seismic performance of the MPFC shear wall is investigated based on the verified FEM. The connection between the CSWM and side column is optimized. Finally, the initial stiffness calculation formula of the MPFC shear wall that considers the impact of that the thickness ratio between the connection steel plate (CSP) and inner steel plate (ISP) is deduced. The results show that the peak bearing capacity, initial stiffness, total energy, and total strain energy of the MPFC shear wall increased by 42.47%, 44.81%, 113.24%, and 58.97%, respectively, compared with those of the MTB steel plate shear wall. The compressive corner damage of the reinforcement concrete faceplate (RCF) of the MPFC shear wall with a side column and CSWM is connected by a middle steel plate is effectively improved. Compared with those of the MPFC shear wall in which the side column and CSWM are connected by bolts, the shearing force, axial force, and bending moment of the side column of the MPFC shear wall in which the side column and CSWM are connected by the middle steel plate are notably decreased by 25.32%, 26.08%, and 39.51%, respectively. The FEM results are compared with the formula calculation results to establish its accuracy in calculating the initial stiffness of the MPFC shear wall.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46643182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic behavior of full‐scale reinforced high‐strength recycled aggregate concrete columns 全尺寸钢筋高强再生骨料混凝土柱的循环性能
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2022-12-14 DOI: 10.1002/tal.2000
Yanna Li, Hongying Dong, W. Cao, Jianwei Zhang, Yan-yin Guo
{"title":"Cyclic behavior of full‐scale reinforced high‐strength recycled aggregate concrete columns","authors":"Yanna Li, Hongying Dong, W. Cao, Jianwei Zhang, Yan-yin Guo","doi":"10.1002/tal.2000","DOIUrl":"https://doi.org/10.1002/tal.2000","url":null,"abstract":"In order to expand the application of high‐strength recycled concrete, five full‐scale square high‐strength recycled concrete columns (600 × 600 mm) were tested under the experimental axial compression ratio (ACR) of 0.54. The seismic behavior of reinforced high‐strength recycled aggregate concrete columns under high ACR and the effects of recycled coarse aggregate (RCA) replacement ratio and ACR on the seismic behavior were analyzed. The results showed that the high‐strength recycled concrete columns have potential to collapse‐resistance capacity subjected to strong earthquakes. Under the similar concrete strengths, the mechanical properties of high‐strength recycled aggregate concrete columns and ordinary concrete columns were comparable even under high ACR. As the ACR increased from 0.35 to 0.54, the bearing capacity increased by up to 12.6%, while the ductility decreased by up to 32.8%. The specimens with 100% RCA were more sensitive to ACR than those with 50% RCA. A four‐fold restoring force model considering the effects of axial load, reinforcement ratio, shear span, and RCA replacement ratio was established, which was in good agreement with the experimental curves.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41446942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Issue Information 问题信息
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2022-12-12 DOI: 10.1002/tal.1949
{"title":"Issue Information","authors":"","doi":"10.1002/tal.1949","DOIUrl":"https://doi.org/10.1002/tal.1949","url":null,"abstract":"No abstract is available for this article.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43136757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of concrete edge distance on the hysteretic response of roof joint 混凝土边距对屋面节点滞回响应的影响
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2022-12-09 DOI: 10.1002/tal.1999
Yao Cui, Mirfa Manzoor, Hongtao Liu, S. Yamada
{"title":"Effect of concrete edge distance on the hysteretic response of roof joint","authors":"Yao Cui, Mirfa Manzoor, Hongtao Liu, S. Yamada","doi":"10.1002/tal.1999","DOIUrl":"https://doi.org/10.1002/tal.1999","url":null,"abstract":"Roof joint connects the upper roof structure to the lower RC columns in large‐span structures. However, during several earthquakes, concrete edge failure of roof joint observed in several previous earthquakes shows potential collapse damage of the large‐span structures. This paper presents an experimental and numerical study on the performance of roof joints under quasi‐static cyclic loading. The effects of concrete edge distance of anchor rods and using horizontally slotted holes in the base plate were investigated and discussed by means of ultimate shear resistances, failure modes, hysteretic responses, anchor strains, and stirrup strains. It was found that concrete edge failure was prone to occur if the edge distance was taken as per current design practice. However, with the use of slotted holes in the base plate, the concrete edge failure could be suppressed due to the sliding between the base plate and the mortar layer. A refined theoretical model was proposed to evaluate the ultimate shear resistance and predict the failure mode. Finite Element Models (FEMs) were also developed to verify the proposed theoretical model in terms of the ultimate shear resistance and the failure mode under both monotonic and cyclic loading.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43873022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study on structural performance of corrugated steel plate shear wall with different yield points steel 不同屈服点钢波纹钢板剪力墙结构性能的数值研究
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2022-12-09 DOI: 10.1002/tal.1996
Gang Li, Xing Wei, Lin Xiao, Linjun Zhou
{"title":"Numerical study on structural performance of corrugated steel plate shear wall with different yield points steel","authors":"Gang Li, Xing Wei, Lin Xiao, Linjun Zhou","doi":"10.1002/tal.1996","DOIUrl":"https://doi.org/10.1002/tal.1996","url":null,"abstract":"As a new type of lateral load‐resisting system in SPSW systems, corrugated SPSWs (CSPSWs) have been gradually researched and applied. Corrugated plates offer various advantages over flat plates including higher energy dissipation capacity, ductility, out‐of‐plane stiffness, and improved buckling stability. For seismic control and isolation techniques, low yield point (LYP) steels (LY100, LY160, and LY225) are the reliable and ideal energy‐dissipating materials. The low yield point CSPSWs combine high energy‐consuming materials with high‐performance structures to provide a better solution for ductile and seismic resistance of high‐rise and super tall buildings. Currently, there are no design codes addressing the seismic performance of LYP corrugated steel plate shear walls (CSPSWs). This study investigates cyclic behavior and energy dissipation performance of corrugated steel plate yield point (100, 160, 225, 235, and 345 MPa) of different thickness CSPSWs and determine the plate yield point that provides the optimum performance. Results and findings of this study reveal that compared with the ordinary yield strength corrugated steel plates, the low yield point CSPSWs have a larger safety factor of lateral bearing capacity, a fuller hysteresis curve, a strong energy dissipation coefficient, a larger ductility coefficient and a smaller fluctuation range of strength degradation coefficient, and better strength stability. The initial equivalent stiffness of CSPSWs with different yield strengths is the same.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47733707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new approach for the computation of design shear force in reinforced concrete walls subjected to seismic loads 地震荷载作用下钢筋混凝土墙体设计剪力计算的新方法
IF 2.4 3区 工程技术
Structural Design of Tall and Special Buildings Pub Date : 2022-12-08 DOI: 10.1002/tal.1998
Aytug Seckin, B. Doran
{"title":"A new approach for the computation of design shear force in reinforced concrete walls subjected to seismic loads","authors":"Aytug Seckin, B. Doran","doi":"10.1002/tal.1998","DOIUrl":"https://doi.org/10.1002/tal.1998","url":null,"abstract":"This paper investigates the dynamic shear amplification in reinforced concrete shear walls designed according to the seismic provisions of the current Turkish Building Earthquake Code (TBEC‐2018). Shear walls with a high ductility level and different aspect ratios are examined to evaluate the design shear force calculated by using the dynamic amplification factor (βv) and overstrength factor (D) defined in TBEC‐2018. For this purpose, response spectrum analyses (RSAs) are first carried out on two‐dimensional cantilever shear walls with heights of 30, 45, and 60 m and with lengths of 1.5, 3, and 4.5 m in the plan. Then, a total of 198 nonlinear time history analyses (NLTHAs) are performed with real and simulated ground motions matched to the elastic design spectrum defined in TBEC‐2018. The comparison of the design shear forces obtained from RSA and the shear demands obtained from NLTHA along the heights of the walls reveals that the design shear forces calculated according to TBEC‐2018 may underestimate the actual shear demands from studied ground motions. Moreover, the applicability of the updates proposed to TBEC‐2018 for the design shear force and shear force diagram along the wall height in reinforced concrete shear wall‐frame systems to cantilever shear walls is also examined.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43440376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信