Yanna Li, Hongying Dong, W. Cao, Jianwei Zhang, Yan-yin Guo
{"title":"全尺寸钢筋高强再生骨料混凝土柱的循环性能","authors":"Yanna Li, Hongying Dong, W. Cao, Jianwei Zhang, Yan-yin Guo","doi":"10.1002/tal.2000","DOIUrl":null,"url":null,"abstract":"In order to expand the application of high‐strength recycled concrete, five full‐scale square high‐strength recycled concrete columns (600 × 600 mm) were tested under the experimental axial compression ratio (ACR) of 0.54. The seismic behavior of reinforced high‐strength recycled aggregate concrete columns under high ACR and the effects of recycled coarse aggregate (RCA) replacement ratio and ACR on the seismic behavior were analyzed. The results showed that the high‐strength recycled concrete columns have potential to collapse‐resistance capacity subjected to strong earthquakes. Under the similar concrete strengths, the mechanical properties of high‐strength recycled aggregate concrete columns and ordinary concrete columns were comparable even under high ACR. As the ACR increased from 0.35 to 0.54, the bearing capacity increased by up to 12.6%, while the ductility decreased by up to 32.8%. The specimens with 100% RCA were more sensitive to ACR than those with 50% RCA. A four‐fold restoring force model considering the effects of axial load, reinforcement ratio, shear span, and RCA replacement ratio was established, which was in good agreement with the experimental curves.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cyclic behavior of full‐scale reinforced high‐strength recycled aggregate concrete columns\",\"authors\":\"Yanna Li, Hongying Dong, W. Cao, Jianwei Zhang, Yan-yin Guo\",\"doi\":\"10.1002/tal.2000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to expand the application of high‐strength recycled concrete, five full‐scale square high‐strength recycled concrete columns (600 × 600 mm) were tested under the experimental axial compression ratio (ACR) of 0.54. The seismic behavior of reinforced high‐strength recycled aggregate concrete columns under high ACR and the effects of recycled coarse aggregate (RCA) replacement ratio and ACR on the seismic behavior were analyzed. The results showed that the high‐strength recycled concrete columns have potential to collapse‐resistance capacity subjected to strong earthquakes. Under the similar concrete strengths, the mechanical properties of high‐strength recycled aggregate concrete columns and ordinary concrete columns were comparable even under high ACR. As the ACR increased from 0.35 to 0.54, the bearing capacity increased by up to 12.6%, while the ductility decreased by up to 32.8%. The specimens with 100% RCA were more sensitive to ACR than those with 50% RCA. A four‐fold restoring force model considering the effects of axial load, reinforcement ratio, shear span, and RCA replacement ratio was established, which was in good agreement with the experimental curves.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.2000\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2000","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Cyclic behavior of full‐scale reinforced high‐strength recycled aggregate concrete columns
In order to expand the application of high‐strength recycled concrete, five full‐scale square high‐strength recycled concrete columns (600 × 600 mm) were tested under the experimental axial compression ratio (ACR) of 0.54. The seismic behavior of reinforced high‐strength recycled aggregate concrete columns under high ACR and the effects of recycled coarse aggregate (RCA) replacement ratio and ACR on the seismic behavior were analyzed. The results showed that the high‐strength recycled concrete columns have potential to collapse‐resistance capacity subjected to strong earthquakes. Under the similar concrete strengths, the mechanical properties of high‐strength recycled aggregate concrete columns and ordinary concrete columns were comparable even under high ACR. As the ACR increased from 0.35 to 0.54, the bearing capacity increased by up to 12.6%, while the ductility decreased by up to 32.8%. The specimens with 100% RCA were more sensitive to ACR than those with 50% RCA. A four‐fold restoring force model considering the effects of axial load, reinforcement ratio, shear span, and RCA replacement ratio was established, which was in good agreement with the experimental curves.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.