{"title":"轴压作用下不锈钢圆钢管混凝土短柱的尺寸效应","authors":"Xiaolong Liu, Senping Wang, Bo Yuan","doi":"10.1002/tal.1983","DOIUrl":null,"url":null,"abstract":"Concrete‐filled stainless steel tube (CFSST) members combine the advantages of stainless steel materials and concrete‐filled steel tube (CFST) members. Therefore, it has a broad range of applications than CFST members in the marine environment and other scenarios requiring great durability and corrosion resistance. However, there are limited researches on the large‐sized CFSST members. In this paper, 30 circular CFSST members with varying steel ratios (3.7% ≤ α ≤ 10.3%), diameters (500 mm ≤ D ≤ 900 mm), and strength of concrete ( fcu = 40 MPa, 50 MPa) are studied on the size effect under axial compression. For peak axial stress, peak axial strain, and composite elastic modulus, size effects are investigated. According to the results, the peak axial stress and peak axial strain of the members increase with the increase in diameter. The modulus of composite elasticity essentially stays constant as the diameter increases, showing that there is no obvious size effect on the composite elastic modulus. The size effect of peak axial stress and peak axial strain is influenced by the steel ratio. Increasing the steel ratio tended to decrease the size effect. According to the generated data, it was found that the current codes of Chinese and European underestimate the ultimate bearing capacity of CFSST short columns significantly. To this end, the resistances of the large‐sized austenitic CFSST columns with a low steel ratio are well predicted by the proposed design model after being modified, based on GB 50936‐2014 and EN 1994‐1‐1 design codes.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Size effect of circular concrete‐filled stainless steel tubular short columns under axial compression\",\"authors\":\"Xiaolong Liu, Senping Wang, Bo Yuan\",\"doi\":\"10.1002/tal.1983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concrete‐filled stainless steel tube (CFSST) members combine the advantages of stainless steel materials and concrete‐filled steel tube (CFST) members. Therefore, it has a broad range of applications than CFST members in the marine environment and other scenarios requiring great durability and corrosion resistance. However, there are limited researches on the large‐sized CFSST members. In this paper, 30 circular CFSST members with varying steel ratios (3.7% ≤ α ≤ 10.3%), diameters (500 mm ≤ D ≤ 900 mm), and strength of concrete ( fcu = 40 MPa, 50 MPa) are studied on the size effect under axial compression. For peak axial stress, peak axial strain, and composite elastic modulus, size effects are investigated. According to the results, the peak axial stress and peak axial strain of the members increase with the increase in diameter. The modulus of composite elasticity essentially stays constant as the diameter increases, showing that there is no obvious size effect on the composite elastic modulus. The size effect of peak axial stress and peak axial strain is influenced by the steel ratio. Increasing the steel ratio tended to decrease the size effect. According to the generated data, it was found that the current codes of Chinese and European underestimate the ultimate bearing capacity of CFSST short columns significantly. To this end, the resistances of the large‐sized austenitic CFSST columns with a low steel ratio are well predicted by the proposed design model after being modified, based on GB 50936‐2014 and EN 1994‐1‐1 design codes.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.1983\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.1983","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Size effect of circular concrete‐filled stainless steel tubular short columns under axial compression
Concrete‐filled stainless steel tube (CFSST) members combine the advantages of stainless steel materials and concrete‐filled steel tube (CFST) members. Therefore, it has a broad range of applications than CFST members in the marine environment and other scenarios requiring great durability and corrosion resistance. However, there are limited researches on the large‐sized CFSST members. In this paper, 30 circular CFSST members with varying steel ratios (3.7% ≤ α ≤ 10.3%), diameters (500 mm ≤ D ≤ 900 mm), and strength of concrete ( fcu = 40 MPa, 50 MPa) are studied on the size effect under axial compression. For peak axial stress, peak axial strain, and composite elastic modulus, size effects are investigated. According to the results, the peak axial stress and peak axial strain of the members increase with the increase in diameter. The modulus of composite elasticity essentially stays constant as the diameter increases, showing that there is no obvious size effect on the composite elastic modulus. The size effect of peak axial stress and peak axial strain is influenced by the steel ratio. Increasing the steel ratio tended to decrease the size effect. According to the generated data, it was found that the current codes of Chinese and European underestimate the ultimate bearing capacity of CFSST short columns significantly. To this end, the resistances of the large‐sized austenitic CFSST columns with a low steel ratio are well predicted by the proposed design model after being modified, based on GB 50936‐2014 and EN 1994‐1‐1 design codes.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.