ZoologyPub Date : 2023-06-01DOI: 10.1016/j.zool.2023.126091
Camilla Roveta , Barbara Calcinai , Federico Girolametti , Joana Fernandes Couceiro , Stefania Puce , Anna Annibaldi , Rodrigo Costa
{"title":"The prokaryotic community of Chondrosia reniformis Nardo, 1847: from diversity to mercury detection","authors":"Camilla Roveta , Barbara Calcinai , Federico Girolametti , Joana Fernandes Couceiro , Stefania Puce , Anna Annibaldi , Rodrigo Costa","doi":"10.1016/j.zool.2023.126091","DOIUrl":"10.1016/j.zool.2023.126091","url":null,"abstract":"<div><p>Microbial communities inhabiting sponges are known to take part in many metabolic pathways, including nutrient cycles, and possibly also in the bioaccumulation of trace elements (TEs). Here, we used high-throughput, Illumina sequencing of 16S rRNA genes to characterize the prokaryotic communities present in the cortex and choanosome, respectively the external and internal body region of <em>Chondrosia reniformis</em>, and in the surrounding seawater. Furthermore, we estimated the total mercury content (THg) in these body regions of the sponge and in the corresponding microbial cell pellets. Fifteen prokaryotic phyla were detected in association with <em>C. reniformis</em>, 13 belonging to the domain Bacteria and two to the Archaea. No significant differences between the prokaryotic community composition of the two regions were found. Three lineages of ammonium-oxidizing organisms (<em>Cenarchaeum symbiosum</em>, <em>Nitrosopumilus maritimus</em>, and <em>Nitrosococcus</em> sp.) co-dominated the prokaryotic community, suggesting ammonium oxidation/nitrification as a key metabolic pathway within the microbiome of <em>C. reniformis</em>. In the sponge fractions, higher THg levels were found in the choanosome compared to the cortex. In contrast, comparable THg levels found in the microbial pellets obtained from both regions were significantly lower than those observed in the corresponding sponge fractions. Our work provides new insights into the prokaryotic communities and TEs distribution in different body parts of a model organism relevant for marine conservation and biotechnology. In this sense, this study paves the way for scientists to deepen the possible application of sponges not only as bioindicators, but also as bioremediation tools of metal polluted environments.</p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"158 ","pages":"Article 126091"},"PeriodicalIF":2.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9589281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-04-01DOI: 10.1016/j.zool.2023.126078
Alexandra M. Pamfilie , Austin M. Garner , Anthony P. Russell , Ali Dhinojwala , Peter H. Niewiarowski
{"title":"Get to the point: Claw morphology impacts frictional interactions on rough substrates","authors":"Alexandra M. Pamfilie , Austin M. Garner , Anthony P. Russell , Ali Dhinojwala , Peter H. Niewiarowski","doi":"10.1016/j.zool.2023.126078","DOIUrl":"10.1016/j.zool.2023.126078","url":null,"abstract":"<div><p><span>Claws are a common anatomical feature among limbed amniotes<span> and contribute to a variety of functions including prey capture<span>, locomotion, and attachment. Previous studies of both avian and non-avian reptiles have found correlations between habitat use and claw morphology, suggesting that variation in claw shape permits effective functioning in different microhabitats. How, or if, claw morphology influences attachment performance, particularly in isolation from the rest of the digit, has received little attention. To examine the effects of claw shape on frictional interactions, we isolated the claws of preserved specimens of Cuban knight anoles (</span></span></span><span><em>Anolis</em><em> equestris</em></span><span>), quantified variation in claw morphology via geometric morphometrics, and measured friction on four different substrates that varied in surface roughness. We found that multiple aspects of claw shape influence frictional interactions, but only on substrates for which asperities are large enough to permit mechanical interlocking with the claw. On such substrates, the diameter of the claw’s tip is the most important predictor of friction, with narrower claw tips inducing greater frictional interactions than wider ones. We also found that claw curvature, length, and depth influence friction, but that these relationships depend on the substrate’s surface roughness. Our findings suggest that although claw shape plays a critical role in the effective clinging ability of lizards, its relative importance is dependent upon the substrate. Description of mechanical function, as well as ecological function, is critical for a holistic understanding of claw shape variation.</span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"157 ","pages":"Article 126078"},"PeriodicalIF":2.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-04-01DOI: 10.1016/j.zool.2023.126075
Grete Nummert, Karmel Ritson , Kristel Nemvalts
{"title":"Photoluminescence in the Garden dormouse (Eliomys quercinus)","authors":"Grete Nummert, Karmel Ritson , Kristel Nemvalts","doi":"10.1016/j.zool.2023.126075","DOIUrl":"10.1016/j.zool.2023.126075","url":null,"abstract":"<div><p><span>Every year, more and more discoveries of photoluminescence in different mammal species are made. The more recent cases thus far have been in duck-billed platypus (</span><em>Ornithorhyncus anatinus</em>), New World squirrels (<em>Glaucomys</em> spp.) and springhare (<em>Pedetidae</em>). Now we can add another species to the list: the garden dormouse (<em>Eliomys quercinus),</em><span> an endemic rodent to Europe, currently categorized as Near Threatened (NT) by the IUCN. The fluorescence was described and compared qualitatively in museum specimens, deceased and hibernating animals. The feet and nose of the hibernating dormouse displayed greenish-blue photoluminescence under UV light through a yellow filter, whereas the fur was bright red. The live animal had more vivid red colouring than the museum specimen. The fading and changing of the colour and brightness of photoluminescence was observed in a recently deceased animal and even more strongly in museum specimens.</span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"157 ","pages":"Article 126075"},"PeriodicalIF":2.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-04-01DOI: 10.1016/j.zool.2023.126077
Taketeru Tomita , Kiyomi Murakumo , Rui Matsumoto
{"title":"Narrowing, twisting, and undulating: Complicated movement in shark spiral intestine inferred using ultrasound","authors":"Taketeru Tomita , Kiyomi Murakumo , Rui Matsumoto","doi":"10.1016/j.zool.2023.126077","DOIUrl":"10.1016/j.zool.2023.126077","url":null,"abstract":"<div><p>Shark intestine presents a complicated three-dimensional morphology, characterized by the development of a coiled internal septum. A basic question regarding the intestine is its movement. This lack of knowledge has prevented the testing of the hypothesis on its functional morphology<span>. The present study, to our knowledge, for the first time, visualized the intestinal movement of three captive sharks using an “underwater ultrasound” system. The results indicated that the movement of the shark intestine involved strong twisting. We suspect that this motion is the mechanism that tightens the coiling of the internal septum, enhancing compression of the intestinal lumen. Our data also revealed the presence of active undulatory movement of the internal septum, of which the undulatory wave propagated in the opposite (anal-to-oral) direction. We hypothesize that this motion decreases the flow rate of the digesta and increases absorptive time. These observations indicate that the kinematics of the shark spiral intestine are more complicated than expected based on morphology, and the fluid flow in the intestine is likely highly regulated by intestinal muscular activity.</span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"157 ","pages":"Article 126077"},"PeriodicalIF":2.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9376340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-04-01DOI: 10.1016/j.zool.2023.126080
Lorenzo Alibardi
{"title":"Immunolocalization of Pglyrp3 and Eps8l1 proteins in the regenerating lizard epidermis indicates they contribute to epidermal barrier formation","authors":"Lorenzo Alibardi","doi":"10.1016/j.zool.2023.126080","DOIUrl":"10.1016/j.zool.2023.126080","url":null,"abstract":"<div><p><span>During tail regeneration in lizards the new corneous layer formed in the regenerating epidermis includes antimicrobial peptides<span>, cystatin<span> and serpins, likely forming an anti-microbial barrier. The present study aims to reveal other proteins potentially contributing to this protective barrier of the epidermis. Using </span></span></span>immunohistochemistry<span> we have detected a peptidoglycan-like recognition protein-3 (pglyrp3), an antimicrobial molecule, and an epidermal growth factor receptor kinase<span> 8 l (eps8l), a receptor of EGF (Epidermal Growth Factor) that stimulates epidermal formation. The study shows that the two proteins are mostly accumulated in the forming wound epidermis and in the shedding layer of the regenerating scales. The shedding layer is the intra-epidermal layer that allows the separation of the initial corneous layer from the regenerating epidermis. While presence of pglyrp3 is likely related to the formation of the anti-microbial barrier, the function of the eps8l protein in epidermal regeneration remains unknown. Whether the latter protein is involved in keratinocyte movement within the regenerating epidermis has to be specifically determined in future studies. Together with the antimicrobial peptides cystatin and serpins, previously detected in the wound epidermis and shedding layer, the present study indicates that pglyp3, and potentially eps8l, contribute to protect the new skin and underlying regenerated tissues from the potential microbe invasion.</span></span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"157 ","pages":"Article 126080"},"PeriodicalIF":2.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9320621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-04-01DOI: 10.1016/j.zool.2023.126079
André Luis da Cruz , Bruno Vilela , Wilfried Klein
{"title":"Morphological and physiological traits of the respiratory system in Iguana iguana and other non-avian reptiles","authors":"André Luis da Cruz , Bruno Vilela , Wilfried Klein","doi":"10.1016/j.zool.2023.126079","DOIUrl":"10.1016/j.zool.2023.126079","url":null,"abstract":"<div><p><span><span>Functional morphology considers form and function to be intrinsically related. To understand organismal functions, a detailed knowledge of morphological and physiological traits is necessary. Regarding the respiratory system, the combined knowledge about pulmonary morphology and </span>respiratory physiology is fundamental to understand how animals exchange gases and regulate critical functions to sustain metabolic activity. In the present study, the paucicameral lungs of </span><em>Iguana iguana</em><span><span> were analyzed morphometrically through stereological analysis using light and transmission electron images and compared with unicameral and multicameral lungs of six other non-avian reptiles. The morphological data were combined with physiological information to perform a principal component analysis (PCA) and </span>phylogenetic tests of the relationship of the respiratory system. </span><em>Iguana iguana</em>, <span><em>Lacerta</em><span><em> </em><em>viridis</em></span></span>, and <em>Salvator merianae</em> presented similar pulmonary morphologies and physiologies when compared to <span><em>Varanus</em><em> examthematicus</em></span>, <em>Gekko gecko</em>, <span><em>Trachemys scripta</em><em>,</em></span> and <span><em>Crocodylus niloticus</em></span>. The former species showed an elevated respiratory surface area (%A<sub>R</sub><span>), a high diffusion capacity, a low volume of total parenchyma (V</span><sub>P</sub>), a low percentage of parenchyma concerning the lung volume (V<sub>L</sub>), and a higher surface/volume ratio of the parenchyma (S<sub>AR</sub>/V<sub>P</sub>), with high respiratory frequency (f<sub>R</sub>) and consequently total ventilation. The total parenchymal surface area (S<sub>A</sub>), effective parenchymal surface-to-volume ratio (S<sub>AR</sub>/V<sub>P</sub>), respiratory surface area (S<sub>AR</sub><span>), and anatomical diffusion factor (ADF) showed a phylogenetic signal, evidence that the morphological traits are more strongly correlated with the species' phylogeny than the physiological traits. In sum, our results indicated that the pulmonary morphology is intrinsically related to physiological traits of the respiratory system. Furthermore, phylogenetic signal tests also indicate that morphological traits are more likely to be evolutionary conserved than physiological traits, suggesting that evolutive physiological adaptations in the respiratory system could happen faster than morphological changes.</span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"157 ","pages":"Article 126079"},"PeriodicalIF":2.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9676882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-04-01DOI: 10.1016/j.zool.2023.126076
Danny Schnerwitzki , Christoph Englert , Manuela Schmidt
{"title":"Adapting the pantograph limb: Differential robustness of fore- and hindlimb kinematics against genetically induced perturbation in the neural control networks and its evolutionary implications","authors":"Danny Schnerwitzki , Christoph Englert , Manuela Schmidt","doi":"10.1016/j.zool.2023.126076","DOIUrl":"10.1016/j.zool.2023.126076","url":null,"abstract":"<div><p><span>The evolutionary transformation of limb morphology to the four-segmented pantograph of therians<span> is among the milestones of mammalian evolution. But, it is still unknown if changes of the mechanical limb function were accompanied by corresponding changes in development and sensorimotor control. The impressive locomotor performance of mammals leaves no doubt about the high integration of pattern formation, neural control and mechanics. But, deviations from normal intra- and interlimb coordination (spatial and temporal) become evident in the presence of perturbations. We induced a perturbation in the development of the neural circuits of the spinal cord of mice (</span></span><span><em>Mus musculus</em></span><span>) using a deletion of the Wilms tumor suppressor gene </span><em>Wt1</em><span> in a subpopulation of dI6 interneurons. These interneurons are assumed to participate in the intermuscular coordination within the limb and in left-right-coordination between the limbs. We describe the locomotor kinematics in mice with conditional </span><em>Wt1</em> knockout and compare them to mice without <em>Wt1</em><span> deletion. Unlike knockout neonates<span><span><span>, knockout adult mice do not display severe deviations from normal (=control group) interlimb coordination, but the coordinated protraction and retraction of the limbs is altered. The forelimbs<span> are more affected by deviations from the control than the hindlimbs. This observation appears to reflect a different degree of integration and resistance against the induced perturbation between the limbs. Interestingly, the observed effects are similar to locomotor deficits reported to arise when </span></span>sensory feedback from </span>proprioceptors<span> or cutaneous receptors is impaired. A putative participation of </span></span></span><em>Wt1</em><span> positive dI6 interneurons in sensorimotor integration is therefore considered.</span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"157 ","pages":"Article 126076"},"PeriodicalIF":2.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9326406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-02-01DOI: 10.1016/j.zool.2022.126058
Marangaby Mahamat , Luis F. De León , Mery L. Martínez
{"title":"Exploring potential drivers of brain size variation in the electric fish Brachyhypopomus occidentalis","authors":"Marangaby Mahamat , Luis F. De León , Mery L. Martínez","doi":"10.1016/j.zool.2022.126058","DOIUrl":"10.1016/j.zool.2022.126058","url":null,"abstract":"<div><p><span><span>Characterizing the factors that shape variation in brain size in natural populations is crucial to understanding the evolution of brain size in animals. Here, we explore how relative brain size and brain </span>allometry<span> vary with drainage, predation risk<span> and sex in natural populations of the electric knifefish </span></span></span><span><em>Brachyhypopomus</em><em> occidentalis</em></span>. Fish were sampled from high and low predation risk sites within two independent river drainages in eastern and central Panamá. Overall, we observed low variation in brain-body size allometric slopes associated with drainage, predation risk and sex category. However, we observed significant differences in allometric intercepts between predation risk sites. We also found significant differences in relative brain mass associated with drainage, as well as significant differences in absolute brain mass associated with drainage, predation risk and sex category. Our results suggest potential constraints in brain-body allometry across populations of <em>B. occidentalis</em>. However, both drainage and predation risk may be playing a role in brain mass variation among populations<em>.</em> We suggest that variation in brain mass in electric fishes is affected by multiple extrinsic and intrinsic factors, including geography, environmental complexity, social interaction and developmental or functional constraints.</p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"156 ","pages":"Article 126058"},"PeriodicalIF":2.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9082061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-02-01DOI: 10.1016/j.zool.2022.126066
Sofía Barbero , Pablo Teta , Guillermo Hernán Cassini
{"title":"An ecomorphological approach to the relationship between craniomandibular morphology and diet in sigmodontine rodents from central-eastern Argentina","authors":"Sofía Barbero , Pablo Teta , Guillermo Hernán Cassini","doi":"10.1016/j.zool.2022.126066","DOIUrl":"10.1016/j.zool.2022.126066","url":null,"abstract":"<div><p>The key role of the skull in food intake and processing implicates its morphology should be to some extent adapted to the functional demands present in different diets, while also showing similarities between those which are closely related. Sigmodontine<span><span> rodents, with a generalist body plan and broad dietary habits, are an interesting case study to explore these relationships. We used linear morphometrics to assess craniomandibular morphology, and explored its relationship with dietary composition and phylogeny in a sample of sigmodontines from central-eastern Argentina, representative of this subfamily’s morphological and ecological diversity. We took 26 measurements performed on 558 specimens belonging to 22 species, and resorted to </span>bibliographic information<span> for proportion of food items in their diets, dietary categories, and phylogeny. Multivariate statistical analyses revealed a strong evolutionary integration between morphological traits of crania and mandibles, and a conspicuous relationship between them and dietary composition in our study group, independent of phylogeny. Species of larger sizes exhibited more robust skulls and a tendency towards folivorous diets, whereas smaller species had more gracile craniomandibular apparatuses and diets richer in seeds and invertebrates. Additionally, we used the observed patterns to made predictions of dietary categories for the three species of this region with unknown diets, completing the map of feeding ecology of one of the most researched group of sigmodontines and enabling future studies to further explore this topic. The present work contributes to understanding the link between morphology, ecology and phylogeny in small mammals.</span></span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"156 ","pages":"Article 126066"},"PeriodicalIF":2.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9427037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ZoologyPub Date : 2023-02-01DOI: 10.1016/j.zool.2022.126065
Rafael Magno Costa Melo , Diego Mendes Ferreira Nunes , Davidson Peruci Moreira , André Alberto Weber , Nilo Bazzoli , Elizete Rizzo
{"title":"Comparative reproductive biology of two sympatric Hypostomus in a Neotropical river","authors":"Rafael Magno Costa Melo , Diego Mendes Ferreira Nunes , Davidson Peruci Moreira , André Alberto Weber , Nilo Bazzoli , Elizete Rizzo","doi":"10.1016/j.zool.2022.126065","DOIUrl":"10.1016/j.zool.2022.126065","url":null,"abstract":"<div><p><span><span><span>Congeneric species often coexist in sympatry using behavioral and </span>morphological adaptations<span> to reduce competition and interspecific interference, but reproductive patterns behind coexistence remain unknown. We analyzed the gonadal morphology and development, reproductive cycle<span>, and population structure of two sympatric congeneric fishes to evaluate the degree of overlap and differentiation of the reproductive biology between species in a Neotropical river. Development of </span></span></span>testes<span><span> and ovaries were similar between species, both showing asynchronous gonadal development, large diameter of </span>gametes<span> and synthesis of mucosubstances by follicle cells to form adhesive eggs. Although the morphometry of germ cells did not present differences, the zona radiata of mature eggs in </span></span></span><span><em>Hypostomus</em><em> garmani</em></span> was markedly thicker than <em>H. francisci</em>, which suggests different spawning habitats. Both species have greater reproductive activity in the rainy season, concomitant with increase in water temperature, however <em>H. garmani</em> initiates and ends its reproduction earlier than <em>H. francisci</em>, indicating a differentiation of reproductive periods. Sexually mature males and females of <em>H. francisci</em> reproduced at a larger mean size then <em>H. garmani</em><span>. The two congeneric species had a similar abundance and sex ratios in the study area. Results show that although the species exhibited broad overlap of reproductive traits, a spatial and temporal differentiation of the reproductive biology was present. This study contributes to understanding reproductive mechanisms that may facilitate coexistence between congeneric sympatric species.</span></p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":"156 ","pages":"Article 126065"},"PeriodicalIF":2.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9076259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}