Matthias Nemeth, Bettina Meidlinger, Elisabeth Barnreiter, Bernard Wallner, Eva Millesi
{"title":"雌性豚鼠在不同生殖阶段的代谢率。","authors":"Matthias Nemeth, Bettina Meidlinger, Elisabeth Barnreiter, Bernard Wallner, Eva Millesi","doi":"10.1016/j.zool.2023.126132","DOIUrl":null,"url":null,"abstract":"<div><p>Reproduction in female mammals is characterized by major changes in steroid hormone concentrations, which can be linked to fluctuations in energy expenditure (EE). Estradiol and cortisol can increase EE and metabolic rates (MRs), but knowledge on MR changes during the estrous cycle and gestation is scarce for many species. This also applies to the domestic guinea pig, a species exhibiting an exceptional estrous cycle among rodents. In this study, MRs were measured through oxygen (O<sub>2</sub>) consumption in female guinea pigs during different reproductive stages. Mean O<sub>2</sub> consumption over 2.5 h, resting metabolic rate (RMR, lowest and most stable O<sub>2</sub> consumption over 3 min), body mass, fecal estrogen and progesterone, and saliva cortisol concentrations were measured in twelve female guinea pigs in a repeated measurements design during diestrus, estrus, and the second trimester of gestation. In estrus, body mass was significantly lower and estrogen and cortisol concentrations were significantly higher compared to diestrus and gestation. Mean O<sub>2</sub> consumption and RMR both were significantly increased in estrus compared to diestrus. Additionally, a positive effect of body mass on MRs detected during diestrus and gestation was not found during estrus. Mean O<sub>2</sub> consumption was also higher during gestation compared to diestrus, and a significant increase in cortisol concentrations during the 2.5-h MR measurement was recorded. The results indicate that estrus in guinea pigs is energetically demanding, which probably reflects catabolic effects of estrogens and cortisol that uncoupled MRs from body mass. Knowledge on the energetic requirements associated with different reproductive stages is important for future physiological and behavioral studies on female guinea pigs.</p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0944200623000661/pdfft?md5=3b738d86b0803767dc09d16d0217c9a8&pid=1-s2.0-S0944200623000661-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolic rates in female guinea pigs during different reproductive stages\",\"authors\":\"Matthias Nemeth, Bettina Meidlinger, Elisabeth Barnreiter, Bernard Wallner, Eva Millesi\",\"doi\":\"10.1016/j.zool.2023.126132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reproduction in female mammals is characterized by major changes in steroid hormone concentrations, which can be linked to fluctuations in energy expenditure (EE). Estradiol and cortisol can increase EE and metabolic rates (MRs), but knowledge on MR changes during the estrous cycle and gestation is scarce for many species. This also applies to the domestic guinea pig, a species exhibiting an exceptional estrous cycle among rodents. In this study, MRs were measured through oxygen (O<sub>2</sub>) consumption in female guinea pigs during different reproductive stages. Mean O<sub>2</sub> consumption over 2.5 h, resting metabolic rate (RMR, lowest and most stable O<sub>2</sub> consumption over 3 min), body mass, fecal estrogen and progesterone, and saliva cortisol concentrations were measured in twelve female guinea pigs in a repeated measurements design during diestrus, estrus, and the second trimester of gestation. In estrus, body mass was significantly lower and estrogen and cortisol concentrations were significantly higher compared to diestrus and gestation. Mean O<sub>2</sub> consumption and RMR both were significantly increased in estrus compared to diestrus. Additionally, a positive effect of body mass on MRs detected during diestrus and gestation was not found during estrus. Mean O<sub>2</sub> consumption was also higher during gestation compared to diestrus, and a significant increase in cortisol concentrations during the 2.5-h MR measurement was recorded. The results indicate that estrus in guinea pigs is energetically demanding, which probably reflects catabolic effects of estrogens and cortisol that uncoupled MRs from body mass. Knowledge on the energetic requirements associated with different reproductive stages is important for future physiological and behavioral studies on female guinea pigs.</p></div>\",\"PeriodicalId\":49330,\"journal\":{\"name\":\"Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0944200623000661/pdfft?md5=3b738d86b0803767dc09d16d0217c9a8&pid=1-s2.0-S0944200623000661-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944200623000661\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200623000661","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Metabolic rates in female guinea pigs during different reproductive stages
Reproduction in female mammals is characterized by major changes in steroid hormone concentrations, which can be linked to fluctuations in energy expenditure (EE). Estradiol and cortisol can increase EE and metabolic rates (MRs), but knowledge on MR changes during the estrous cycle and gestation is scarce for many species. This also applies to the domestic guinea pig, a species exhibiting an exceptional estrous cycle among rodents. In this study, MRs were measured through oxygen (O2) consumption in female guinea pigs during different reproductive stages. Mean O2 consumption over 2.5 h, resting metabolic rate (RMR, lowest and most stable O2 consumption over 3 min), body mass, fecal estrogen and progesterone, and saliva cortisol concentrations were measured in twelve female guinea pigs in a repeated measurements design during diestrus, estrus, and the second trimester of gestation. In estrus, body mass was significantly lower and estrogen and cortisol concentrations were significantly higher compared to diestrus and gestation. Mean O2 consumption and RMR both were significantly increased in estrus compared to diestrus. Additionally, a positive effect of body mass on MRs detected during diestrus and gestation was not found during estrus. Mean O2 consumption was also higher during gestation compared to diestrus, and a significant increase in cortisol concentrations during the 2.5-h MR measurement was recorded. The results indicate that estrus in guinea pigs is energetically demanding, which probably reflects catabolic effects of estrogens and cortisol that uncoupled MRs from body mass. Knowledge on the energetic requirements associated with different reproductive stages is important for future physiological and behavioral studies on female guinea pigs.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.