{"title":"Simulation of the failure and run-out processes of rotational–translational loess landslides using an SPH model considering strain softening","authors":"Zhitian Qiao, Wei Shen, Peng Xin, Tonglu Li, Ping Li, Hongcheng Jiao","doi":"10.1007/s11440-024-02427-4","DOIUrl":"10.1007/s11440-024-02427-4","url":null,"abstract":"<div><p>The rotational–translational loess landslides are widely distributed in northwest China, usually posing threats to the surrounding residents and infrastructure. These loess landslides are characterized by the formation of multiple slip surfaces during the run-out process, and the mechanisms of this phenomenon in loess landslides have not been sufficiently investigated. Therefore, in this paper, we integrated the elastic–plastic strain softening constitutive law into the original DualSPHysics code to extend its application in simulating rotational–translational loess landslides. Two benchmark cases are studied to validate the model, the failure process of a cohesive soil slope without strain softening and that of a sensitive clay slope with strain softening. The results illustrate that our model can effectively predict large deformation. Then, the run-out process of the Caijiapo landslide in northwest China is analyzed by the modified model to investigate its failure mechanism. The results illustrate that the failure pattern of the Caijiapo loess landslide is very different from the typical retrogressive failure of clay landslides. The main slip surface of the Caijiapo landslide is controlled by the pre-existing structural plane. The second and third slip surfaces of this landslide are formed inside the sliding mass due to stress redistribution during the run-out process. Three scarps are formed in the landslide deposit because of the formation of multiple slip surfaces. This deposition morphology can be well reproduced by the SPH model taking strain softening into account, while the results using an SPH model without considering strain softening cannot capture this essential deformation characteristic.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 12","pages":"7799 - 7820"},"PeriodicalIF":5.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta GeotechnicaPub Date : 2024-10-21DOI: 10.1007/s11440-024-02424-7
Zhen Zhang, Lingxu Li, Guanbao Ye, Meng Wang, Yan Xiao, Xun Wan
{"title":"Scaled model tests on pile types influencing the stability of stiffened deep mixed pile-supported embankment over soft clay","authors":"Zhen Zhang, Lingxu Li, Guanbao Ye, Meng Wang, Yan Xiao, Xun Wan","doi":"10.1007/s11440-024-02424-7","DOIUrl":"10.1007/s11440-024-02424-7","url":null,"abstract":"<div><p>Stiffened deep mixed (SDM) piles can be classified into three types based on the relative lengths of the core pile and the outer DM pile: the length of the core pile is shorter than, equal to, or longer than that of the outer DM pile. Limited research has been undertaken to investigate the performance of embankments supported by various types of SDM piles over soft soil. This study carried out a series of model tests to investigate the stability of embankment over soft clay improved by different types of SDM piles. The test results indicated that the improvement factors for embankment stability were 1.37, 1.87, and 1.75 for the tests with short-core, equal-core and long-core SDM piles, respectively. Significant vertical stress was concentrated onto the core pile due to its high stiffness, while the outer DM pile yielded earlier. Under the embankment crest, SDM piles generally failed by compression, while the short-core SDM pile exhibited bulging beneath the core pile tips, and the long-core SDM pile fractured at the unwrapped section. The SDM piles under the embankment slope mainly bore bending moments, and the type of SDM piles affected the bending pattern. The stability of SDM pile-supported embankments can be reasonably evaluated by considering the resisting moment of the piles due to lateral force. The position parameter of equivalent lateral force in an SDM pile-supported embankment ranges from 1/4 to 2/5.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 2","pages":"625 - 640"},"PeriodicalIF":5.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta GeotechnicaPub Date : 2024-10-17DOI: 10.1007/s11440-024-02418-5
Z. Liu, R. Dabloul, B. Jin, B. Jha
{"title":"Crack propagation and stress evolution in fluid-exposed limestones","authors":"Z. Liu, R. Dabloul, B. Jin, B. Jha","doi":"10.1007/s11440-024-02418-5","DOIUrl":"10.1007/s11440-024-02418-5","url":null,"abstract":"<div><p>Crack initiation and propagation in rocks exposed to injected fluids must be understood better for sustainable sequestration and geo-energy applications. One specific challenge is the characterization of the fluid-induced changes in the stress state and mechanical properties when multiple cracks grow and interact with each other. We conduct crack propagation tests on brine-exposed and supercritical <span>(hbox {CO}_2)</span>-exposed Indiana limestone samples under uniaxial compression conditions. By analyzing the displacement and strain fields using Digital Image Correlation and the first arrival time and amplitude of the transmitted shear waves, we characterize the effect of crack propagation and interaction events on stress and toughness. We build 3-D simulation models of crack propagation under uniaxial compression using the extended finite element method to analyze the 3-D stress and deformation fields in high resolution. We quantify the evolution of crack-tip’s J-integral value with the crack length for wing cracks and shear cracks in samples exposed to mixtures of brine and supercritical <span>(hbox {CO}_2)</span> at subsurface conditions. Experimental and simulation results are synthesized to gain insights into crack propagation, shear-to-tensile failure transition, and interaction of cracks in fluid-exposed rocks. Crack length and J-integral analysis quantifies the impact of fluid exposure on the fracture toughness.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 1","pages":"265 - 285"},"PeriodicalIF":5.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02418-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta GeotechnicaPub Date : 2024-10-16DOI: 10.1007/s11440-024-02422-9
Shan Huang, Jinsong Huang, Richard Kelly, Shui-Hua Jiang, Merrick Jonse, A. H. M. Kamruzzaman
{"title":"Coupling effects on class C predictions of soft soil settlements","authors":"Shan Huang, Jinsong Huang, Richard Kelly, Shui-Hua Jiang, Merrick Jonse, A. H. M. Kamruzzaman","doi":"10.1007/s11440-024-02422-9","DOIUrl":"10.1007/s11440-024-02422-9","url":null,"abstract":"<div><p>In uncoupled consolidation analysis, settlement and pore water pressure are solved independently, whereas in coupled analysis, they are solved simultaneously to ensure continuity (i.e., the volume change in soil due to compression must equal the water volume change caused by dissipation). This study investigates the coupling effects of soil deformation and pore water pressure dissipation in the back analysis of soft soil settlements. It further evaluates the suitability of both coupled and uncoupled constitutive models with different types of monitoring data, providing practical guidance for selecting consolidation models and achieving reliable long-term predictions. The one-dimensional governing equations for soft soil consolidation, incorporating prefabricated vertical drains and creep deformation, are first reviewed. A case study of a trial embankment in Ballina, New South Wales, Australia, is then used to demonstrate the impact of coupling effects and monitoring data on settlement predictions. The results show that considering coupling effects not only improves long-term settlement predictions but also reduces uncertainties in the updated soil parameters, especially when both settlement and pore water pressure data are used.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 2","pages":"723 - 742"},"PeriodicalIF":5.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02422-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study on the mechanical behavior of artificially prepared stratified soil in triaxial compression tests","authors":"Lisha Luo, Yang Yang, Zhifu Shen, Wangcheng Zhang, Zhihua Wang, Xudong Wang, Hongmei Gao, Qier Xu","doi":"10.1007/s11440-024-02426-5","DOIUrl":"10.1007/s11440-024-02426-5","url":null,"abstract":"<div><p>Stratified soil is a type of widely distributed special soil, consisting of alternating interlayered soils with distinct properties in both terrestrial and marine sedimentation conditions. It is endowed with anisotropic physical properties and mechanical behavior by its unique laminar structure features. So far, its mechanical behavior has not been fully understood. To systematically investigate the laminar structure effects of stratified soil, artificially prepared stratified soil samples of silty clay interlayered by silty sand were studied. First, the laminar structure features of stratified soil in Yangtze River floodplain deposits at Nanjing, China, were summarized. Then, based on the laminar structure features, preparation method for stratified soil samples was proposed by stacking soil layers one by one, which was basically an integration of <i>soil paste plus consolidation method</i> for silty clay layer preparation and <i>water pluviation plus freezing method</i> for silty sand layer preparation. After verification of the sample preparation method, a series of consolidated-undrained triaxial compression tests were carried out to study the mechanical behavior of stratified soil. The effects of thickness of constituent layers, consolidation conditions (isotropic or anisotropic consolidation), and loading paths (conventional triaxial compression, constant-<i>p</i> compression, and lateral extension) were investigated. The results show that the mechanical behavior of stratified soil (including stress–strain curves, excessive pore pressure accumulation, sample failure modes, and strength index) generally falls in between the behavior of the two constituent layers of soil, i.e., a normally consolidated silty clay and a medium-dense silty sand. The silty clay layer thickness (with fixed silty sand layer thickness), consolidation conditions, and loading paths together determine the stratified soil behavior, either silty sand dominant or silty clay dominant. Laminar structure can improve volumetric dilation trend and thus increase undrained shear strength of stratified soil. The presence of silty clay layer would suppress shear banding development in stratified soil. The strength of stratified soil can be underestimated by experiments using disturbed or remolded samples where the laminar structure is partially or completely lost.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 2","pages":"543 - 562"},"PeriodicalIF":5.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta GeotechnicaPub Date : 2024-10-14DOI: 10.1007/s11440-024-02425-6
Lei Shi, Haiyang Qiao, Xiao Yang, Bin Zhang, Jianwei Zhang
{"title":"Experimental investigation of fracture permeability reduction process by MICP technology with Sporosarcina pasteurii cultured by different mediums","authors":"Lei Shi, Haiyang Qiao, Xiao Yang, Bin Zhang, Jianwei Zhang","doi":"10.1007/s11440-024-02425-6","DOIUrl":"10.1007/s11440-024-02425-6","url":null,"abstract":"<div><p>This study conducted a detailed investigation on the influence of the culture medium type on the permeability reduction effect through microbial-induced calcium carbonate precipitation (MICP) technology in a single rough fracture. The differences between the Sporosarcina pasteurii cultured by two mediums were compared in terms of bacterial growth properties, permeability treatment effects, distribution characteristics of induced CaCO<sub>3</sub>, and microscopic crystal characteristics. The study revealed that the culture medium did indeed impact the permeability reduction effect when treated with MICP technology, primarily related to whether urea is added in the culture medium. Two distinct permeability reduction modes were proposed for the treatment process using Sporosarcina pasteurii cultured by different mediums through one-phase injection (mixing bacterial solution and cementing solution). The permeability decreased rapidly, and the distribution of induced CaCO<sub>3</sub> was uneven after treatment with Sporosarcina pasteurii cultured in medium containing urea, while the permeability decreased relatively slowly and the induced CaCO<sub>3</sub> distribution was relatively uniform when treated with Sporosarcina pasteurii cultured in medium without urea. Additionally, differences in crystal morphology were observed due to variations in seepage characteristics during the treatment process with the Sporosarcina pasteurii cultured by different mediums. Finally, some investigations were given to the treatment effect optimization for the treatment process of Sporosarcina pasteurii cultured in medium containing urea. This study gave an insight to the regulation mechanism of culture medium and treatment method for the process of permeability reduction by MICP technology in the rock fracture.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7349 - 7368"},"PeriodicalIF":5.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta GeotechnicaPub Date : 2024-10-10DOI: 10.1007/s11440-024-02423-8
Lingzhi Zhang, Hanlong Liu, Xuanming Ding, Qiang Ou, Chunyan Wang
{"title":"Visual experimental investigation on the performance of grouted gravel pile during construction process in clay","authors":"Lingzhi Zhang, Hanlong Liu, Xuanming Ding, Qiang Ou, Chunyan Wang","doi":"10.1007/s11440-024-02423-8","DOIUrl":"10.1007/s11440-024-02423-8","url":null,"abstract":"<div><p>The grouted gravel pile is a new method of pile foundation, which has been widely used in engineering fields in recent years. However, the grout diffusion characteristics and full-field displacement response of soil during grouting have not been fully revealed and systematically studied in previous publications. This paper employed a transparent soil model test system to explore the effects of the grouting pressure (GP), soil pre-consolidation pressure (SPCP), and initial viscosity of grout (GIV) on the grouting performances and load-bearing characteristics of grouted gravel piles. The development laws of the grouting duration, displacement field of the soil, and ultimate load-bearing capacity of the pile were analyzed. The results show that the total grouting duration decreases with a higher GP, increases with the increasing GIV, initially increases and then decreases as SPCP increases. Both the range of horizontal and vertical displacements of the soil around the pile and the distribution of vertical displacements of the soil at the pile end were obviously enlarged with GP as well as with GIV. However, with the increasing SPCP, they showed a decreasing tendency. The vertical ultimate load-bearing capacity of the grouted gravel pile increases with GP, SPCP, and GIV to varying degrees. The findings of this study contribute to the understanding of the pile-soil interaction during grouting process of the grouted gravel pile, which may improve the design of construction parameters.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7369 - 7387"},"PeriodicalIF":5.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta GeotechnicaPub Date : 2024-10-05DOI: 10.1007/s11440-024-02412-x
Arshad Ullah, Azman Kassim, Ahmad Safuan A. Rashid, Yu Huang, Muhammad Junaid, Mohammad Jawed Roshan
{"title":"Experimental and 3D numerical analysis of embankment on soft soil improved with cement bottom ash columns","authors":"Arshad Ullah, Azman Kassim, Ahmad Safuan A. Rashid, Yu Huang, Muhammad Junaid, Mohammad Jawed Roshan","doi":"10.1007/s11440-024-02412-x","DOIUrl":"10.1007/s11440-024-02412-x","url":null,"abstract":"<div><p>Bottom ash (BA) is a byproduct produced during coal combustion and can be utilized in mortar as a column material to conserve natural resources and promote sustainable ground stabilization. In this paper, the load-carrying capacity performance of the embankment resting on cement bottom ash columns (CBAC) improved ground was examined. Physical model tests and numerical analysis were conducted for the soft soil improved with three columns spacing to diameter ratios (<i>s</i>/<i>d</i>) of 1.8, 2.4, and 3.6 and two columns length to diameter ratios (<i>L</i>/<i>d</i>) of 6 and 8. Three earth pressure transducers, load cell, and pore water pressure transducer were employed to measure the applied vertical stress on the bottom and top of the column and surrounding clay, embankment surface, and excess pore water pressure (<i>u′</i>), respectively. The findings obtained from both physical and numerical models demonstrated that ultimate bearing capacity (<i>q</i><sub>ult</sub>) increased by reducing the <i>s</i>/<i>d</i> and increasing the <i>L</i>/<i>d</i> values. The <i>q</i><sub>ult</sub> increased by almost 1.15, 1.39, 1.70 times and 1.18, 1.44, and 1.77 times as compared to the unimproved soil for the <i>s</i>/<i>d</i> of 3.6, 2.4, and 1.8 with <i>L</i>/<i>d</i> values of 6 and 8, respectively. The maximum improvement was achieved for the model with CBAC having <i>L</i>/<i>d</i> of 8 and <i>s</i>/<i>d</i> of 1.8. In addition, a mathematical equation with <i>R</i><sup>2</sup> of 0.999 was established for the determination of the predicted <i>q</i><sub>ult</sub>. The results of this paper can lead to the usage of BA as a green material in the column for ground stabilization.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7727 - 7745"},"PeriodicalIF":5.6,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta GeotechnicaPub Date : 2024-10-04DOI: 10.1007/s11440-024-02417-6
Haizhi Zang, Shanyong Wang, John P. Carter
{"title":"Analysis of thixotropy of cement grout based on a virtual bond model","authors":"Haizhi Zang, Shanyong Wang, John P. Carter","doi":"10.1007/s11440-024-02417-6","DOIUrl":"10.1007/s11440-024-02417-6","url":null,"abstract":"<div><p>Thixotropy of cementitious materials is a crucial intrinsic property that determines the flowability and workability of cement-based grout. A novel virtual bond model of cement particles is developed in this paper to depict the thixotropy of cement grout. A particulate description of the reversible and erasable interparticle bonds is established based on experimental observations with a focus on the non-contact interactions mainly contributed in practice by calcium silicate hydrates (C–S–H). The structural breakdown of the cement network is realized through bonds breakage under applied motion, and the bonding network recovers with regeneration of interparticle connections that involve reversible hydrate reactions in the mixture. The balance between bond rupture and rebuilding can be tuned by assigning different strength limits for bond breakage. We have implemented this model in the open-source code Yade to carry out 3D discrete element method simulations of a rotational vane system filled with spherical particles, and the results show good agreement with experimental data. The modelling results reveal the transition from a solid-like structure to a fluid-like medium within cement suspensions caused by the evolution of broken interparticle bonds. The results also provide a distinct view of thixotropic variation upon disturbance. This model is extendable to other cohesive materials providing an explicit physical definition of the interparticle interactions. It also provides a theoretical explanation for the empirical estimations of thixotropy common in engineering industries and a potential means of measuring cementitious granular flow that may be useful in future studies.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7427 - 7450"},"PeriodicalIF":5.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02417-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acta GeotechnicaPub Date : 2024-10-04DOI: 10.1007/s11440-024-02416-7
Longjian Huang, Weiling Cai, Bogireddy Chandra, Ankit Garg, Yanning Wang
{"title":"Influence of bio-cementation on gas permeability of unsaturated soils in landfill cover system","authors":"Longjian Huang, Weiling Cai, Bogireddy Chandra, Ankit Garg, Yanning Wang","doi":"10.1007/s11440-024-02416-7","DOIUrl":"10.1007/s11440-024-02416-7","url":null,"abstract":"<div><p>Landfill cover systems should exhibit low gas permeability to minimize the overflow of greenhouse gases and subsequent air pollution. Microbially induced carbonate precipitation (MICP), a biocementation technique, has been applied for subsurface soil stabilization by improving the shear strength of the soil. However, the impact of MICP on the gas permeability of unsaturated soils remains unknown. Considering the role of biocementation in the modification of soil interpores, this study investigated the feasibility of using the MICP technique to reduce the gas permeability of granite residual soils in response to unsaturated conditions. The biocemented soil samples were prepared by mixing soils with MICP chemical solutions at different chemical concentrations. Water retention tests and measurements of gas permeability were performed, in which suction, volumetric water content and gas permeability were continuously monitored. Additionally, energy-dispersive X-ray spectroscopy and X-ray diffraction analyses were performed to investigate the formation of CaCO<sub>3</sub> precipitates; scanning electron microscopy was used to study the impact of MICP on the soil interpore structure, and the acid washing method was used to determine the CaCO<sub>3</sub> content. The results showed that soils treated with higher concentrations of MICP chemical solutions had higher air entry pressures and residual water contents. This indicates the improvement of water retention due to the presence of MICP, which increases the microstructural porosity and enhances the capillarity, as observed via microscopy. Furthermore, the results revealed that biocementation significantly reduced the gas permeability of the soil and that the change in the maximum gas permeability strongly correlated with the MICP chemical solution concentration and the CaCO<sub>3</sub> content. This study highlights the role of MICP in soil–water–air interface studies and the potential application of this biocementation technique to minimizing gas emission issues in landfill cover systems.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7389 - 7405"},"PeriodicalIF":5.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}