Premix–spray biomineralization method for anti-disintegration improvement of granite residual soil

IF 5.6 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Han-Jiang Lai, Xing-Zhi Ding, Ming-Juan Cui, Yan-Jun Zhou, Jun-Jie Zheng, Zhi-Bo Chen
{"title":"Premix–spray biomineralization method for anti-disintegration improvement of granite residual soil","authors":"Han-Jiang Lai,&nbsp;Xing-Zhi Ding,&nbsp;Ming-Juan Cui,&nbsp;Yan-Jun Zhou,&nbsp;Jun-Jie Zheng,&nbsp;Zhi-Bo Chen","doi":"10.1007/s11440-024-02449-y","DOIUrl":null,"url":null,"abstract":"<div><p>Granite residual soils are highly susceptible to softening and disintegration when exposed to water, extremely easy to cause geological disasters. Biomineralization can be a promising method to improve the anti-disintegration of granite residual soils. However, due to the low permeability of the soil, it may be difficult to effectively or efficiently improve the anti-disintegration of granite residual soils using conventional premix or spray methods. This study proposes a premix–spray biomineralization method to improve the anti-disintegration of granite residual soils. The bacterial suspension, bioslurry, and crude soybean urease solution were used as the urea hydrolysis media in this study. The biomineralization of granite residual soils by premix, spray, and premix–spray methods was compared based on the disintegration test and calcium carbonate content measurement. The scanning electron microscope observation, energy-dispersive X-ray spectroscopy, and X-ray diffraction were also conducted to clarify the microscopic characteristics of the biotreated granite residual soils. The test results indicate that the premix–spray method could effectively improve the anti-disintegration of granite residual soil, and the bioslurry is the optimal urea hydrolysis medium for the premix treatment. The sample prepared by premixing with bioslurry followed by 3 cycles of spray treatment could remain relatively stable with no apparent disintegration or cracking within 24 h of immersion. The underlying mechanisms for the anti-disintegration improvement of granite residual soils with biomineralization may mainly include the pore filling, encapsulating bonds between soil particles, and biocementation of adjacent soil particles by the precipitated calcium carbonate crystals.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"20 3","pages":"1251 - 1265"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02449-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Granite residual soils are highly susceptible to softening and disintegration when exposed to water, extremely easy to cause geological disasters. Biomineralization can be a promising method to improve the anti-disintegration of granite residual soils. However, due to the low permeability of the soil, it may be difficult to effectively or efficiently improve the anti-disintegration of granite residual soils using conventional premix or spray methods. This study proposes a premix–spray biomineralization method to improve the anti-disintegration of granite residual soils. The bacterial suspension, bioslurry, and crude soybean urease solution were used as the urea hydrolysis media in this study. The biomineralization of granite residual soils by premix, spray, and premix–spray methods was compared based on the disintegration test and calcium carbonate content measurement. The scanning electron microscope observation, energy-dispersive X-ray spectroscopy, and X-ray diffraction were also conducted to clarify the microscopic characteristics of the biotreated granite residual soils. The test results indicate that the premix–spray method could effectively improve the anti-disintegration of granite residual soil, and the bioslurry is the optimal urea hydrolysis medium for the premix treatment. The sample prepared by premixing with bioslurry followed by 3 cycles of spray treatment could remain relatively stable with no apparent disintegration or cracking within 24 h of immersion. The underlying mechanisms for the anti-disintegration improvement of granite residual soils with biomineralization may mainly include the pore filling, encapsulating bonds between soil particles, and biocementation of adjacent soil particles by the precipitated calcium carbonate crystals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geotechnica
Acta Geotechnica ENGINEERING, GEOLOGICAL-
CiteScore
9.90
自引率
17.50%
发文量
297
审稿时长
4 months
期刊介绍: Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信