Journal of Hydro-environment Research最新文献

筛选
英文 中文
Effect of submergence of sacrificial piles on local scour reduction at a bridge pier under U-type debris jam conditions U 型泥石流堵塞条件下牺牲桩沉入水中对减少桥墩局部冲刷的影响
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-11-01 DOI: 10.1016/j.jher.2024.10.003
{"title":"Effect of submergence of sacrificial piles on local scour reduction at a bridge pier under U-type debris jam conditions","authors":"","doi":"10.1016/j.jher.2024.10.003","DOIUrl":"10.1016/j.jher.2024.10.003","url":null,"abstract":"<div><div>A group of non-submerged sacrificial piles placed in front of a bridge pier have a propensity to trap a significant volume of floating debris during river floods, which affects their effectiveness as a scour countermeasure. This problem can be avoided by using short piles such that the tips of the piles lie below the free water surface, also known as submerged piles. However, it will cause the floating debris to accumulate at the pier itself. The current study attempts to ascertain whether or not such trapping of debris with submerged piles is preferable to that by emergent piles from the perspective of local scour protection of the bridge pier. Laboratory flume tests were conducted under uniform, subcritical, steady, and clear-water flow conditions. The ideal submergence value was ascertained by examining submerged sacrificial piles with varying spans (or lengths) with respect to the flow depth. The local scour reduction efficacy of these submerged piles was then compared with non-submerged piles, first without and subsequently with U-type (horseshoe-shaped) debris jams. Results revealed that submerged sacrificial piles spanning 50–60 % of the flow depth provide optimum protection to the pier against local scour, and this was slightly higher than that offered by emergent piles in an identical layout. In addition, submerged sacrificial piles with ideal submergence protected the pier better against local scour than emergent piles under U-type debris jam conditions.</div></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the impact of greenhouse rainwater harvesting managed aquifer recharge on the groundwater system in the southern Jeju Island, South Korea: Implication from a numerical modeling approach 评估温室雨水收集管理含水层补给对韩国济州岛南部地下水系统的影响:数值模拟方法的启示
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-10-02 DOI: 10.1016/j.jher.2024.10.002
{"title":"Assessment of the impact of greenhouse rainwater harvesting managed aquifer recharge on the groundwater system in the southern Jeju Island, South Korea: Implication from a numerical modeling approach","authors":"","doi":"10.1016/j.jher.2024.10.002","DOIUrl":"10.1016/j.jher.2024.10.002","url":null,"abstract":"<div><div>Managed aquifer recharge (MAR) is increasingly being adopted worldwide to mitigate groundwater depletion and ensure the sustainability of water resources. Rainwater harvesting (RWH)-MAR can augment aquifer storage and reduce flood damage in rural areas with dense greenhouse facilities. This study has assessed the feasibility of greenhouse RWH-MAR in Namwon agricultural areas in the southern part of Jeju Island, South Korea, by considering the injection rate and location of MAR using a numerical model. The model results showed that groundwater level increases were directly related to the infiltration rate, although spatial differences in head rise were observed owing to the spatial variability of hydraulic conductivity. In addition, installing the RWH-MAR in highland areas (&gt;100 masl) enhanced the water level rise when compared to the expected values, indicating that a higher hydraulic gradient and thick unsaturated zone facilitated more effective MAR outcomes than in lowland areas. To optimize the contribution of source water to the agricultural water demand, placing the RWH-MAR near the pumping well improved the availability of injected rainwater to agricultural wells. This study highlights the importance of designing RWH-MAR schemes considering MAR objectives and the topographic and hydrogeological characteristics of the site.</div></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drag coefficients and water surface profiles in channels with arrays of linear rigid emergent vegetation 带有线性刚性挺水植被阵列的渠道中的阻力系数和水面剖面
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-10-02 DOI: 10.1016/j.jher.2024.10.001
{"title":"Drag coefficients and water surface profiles in channels with arrays of linear rigid emergent vegetation","authors":"","doi":"10.1016/j.jher.2024.10.001","DOIUrl":"10.1016/j.jher.2024.10.001","url":null,"abstract":"<div><div>Although vegetation in watercourses has an important ecological function, from a hydraulic point of view, it increases flow resistance, determinates higher water levels and generates a greater risk of flooding. In engineering practice, to determine water levels, the drag coefficient must be known, whose experimental values, in literature, are provided for uniform or quasi-uniform flow. In this paper, the expression of a drag coefficient, previously proposed by the authors for the case of emergent rigid vegetation arranged in a linear manner, was used to simulate experimental water surface profiles, employing the effective width for the first time. The formula was validated by simulating 26 experimental profiles observed at the University of Calabria, over 1100 points in total, plus 8 published in literature. In some of these applications, the vegetation density was much higher than that for which the drag coefficient expression was derived. For this reason, it is possible to consider a new, wider field of validity for it. The proposed equation is independent of the Reynolds stem number, so that it can be used in natural streams and rivers, provided that viscosity effects can be considered negligible. Finally, some comments are offered on the application of a new formula proposed in literature regarding the computation of the profile when downstream depth is taken as a boundary condition.</div></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time prediction of the week-ahead flood index using hybrid deep learning algorithms with synoptic climate mode indices 利用混合深度学习算法和同步气候模式指数实时预测一周前的洪水指数
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-09-25 DOI: 10.1016/j.jher.2024.09.001
{"title":"Real-time prediction of the week-ahead flood index using hybrid deep learning algorithms with synoptic climate mode indices","authors":"","doi":"10.1016/j.jher.2024.09.001","DOIUrl":"10.1016/j.jher.2024.09.001","url":null,"abstract":"<div><div>This paper aims to propose a hybrid deep learning (DL) model that combines a convolutional neural network (CNN) with a bi-directional long-short term memory (BiLSTM) for week-ahead prediction of daily flood index (<em>I<sub>F</sub></em>) for Bangladesh. The neighbourhood component analysis (NCA) is assigned for significant feature selection with synoptic-scale climatic indicators. The results successfully reveal that the hybrid CNN-BiLSTM model outperforms the respective benchmark models based on forecasting capability, as supported by a minimal mean absolute error and high-efficiency metrics. With respect to <em>I<sub>F</sub></em> prediction, the hybrid CNN-BiLSTM model shows over 98% of the prediction errors were less than 0.015, resulting in a low relative error and superiority performance against the benchmark models in this study. The adaptability and potential utility of the suggested model may be helpful in subsequent flood monitoring and may also be beneficial to policymakers at the federal and state levels.</div></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of climate change and regional water supply capacity on integrated drought risk 气候变化和区域供水能力对综合干旱风险的影响
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-09-01 DOI: 10.1016/j.jher.2024.08.003
{"title":"The effects of climate change and regional water supply capacity on integrated drought risk","authors":"","doi":"10.1016/j.jher.2024.08.003","DOIUrl":"10.1016/j.jher.2024.08.003","url":null,"abstract":"<div><p>Due to climate change, the frequency and duration of meteorological drought have increased. In addition, local water supply capacity has not met water demand in many regions, which will eventually lead to serious water shortages. To mitigate the effects of drought on sustainable water use, it is necessary to understand how climate change affects regional water supply capacity and drought risk. To this end, this study evaluated the drought response capacity of regional water supply systems and assessed the comprehensive drought risk in terms of drought hazard, vulnerability, and response capacity. To avoid subjectivity in risk analysis, structural equation modeling was used to select primary indicators and probability and statistical methods were used to assign weights to the indicators. The changes in drought risk in different climate change scenarios were assessed using sensitivity analyses. The overall results indicate that the future drought risks in Gyeonggi, Gyeongsang, Chungcheong, Jeolla, and Gangwon are 18, 12, 13, 9, and 10% higher, respectively, than the current risk level. The sensitivity analyses showed that Jinju in Gyeongsang province, which has a high drought response capacity, had the largest decreasing rate in drought risk. The quantified changes in drought risk under future climate change scenarios will be useful for identifying areas with a high drought risk and making decisions about drought mitigation under climate change.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142095437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Runoff prediction based on the IGWOLSTM model: Achieving accurate flood forecasting and emergency management 基于 IGWOLSTM 模型的径流预测:实现准确的洪水预报和应急管理
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-08-22 DOI: 10.1016/j.jher.2024.08.002
{"title":"Runoff prediction based on the IGWOLSTM model: Achieving accurate flood forecasting and emergency management","authors":"","doi":"10.1016/j.jher.2024.08.002","DOIUrl":"10.1016/j.jher.2024.08.002","url":null,"abstract":"<div><p>With the acceleration of global climate change and urbanization, the frequency and impact of flood disasters are increasing year by year, making flood emergency management increasingly crucial for safeguarding people’s lives, property, and societal stability. To enhance the accuracy of river flow prediction, this study employs an Improved Gray Wolf Optimization Algorithm (IGWO) to optimize parameters of the Long Short-Term Memory Network (LSTM) model. Experimental results demonstrate that the proposed algorithm significantly improves the accuracy of river flow prediction, achieving higher precision and better generalization compared to traditional machine learning algorithms. This method provides more reliable data support for flood warning systems, aiding in the accurate prediction of flood occurrence timing and intensity, thereby providing scientific basis for flood prevention and mitigation efforts. Moreover, this approach supports hydro-logical research, enhancing understanding of river water cycle processes and ecosystem changes.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing non-newtonian fluid modeling: A novel extension of the cross flow curve model 加强非牛顿流体建模:横流曲线模型的新扩展
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-08-18 DOI: 10.1016/j.jher.2024.08.001
{"title":"Enhancing non-newtonian fluid modeling: A novel extension of the cross flow curve model","authors":"","doi":"10.1016/j.jher.2024.08.001","DOIUrl":"10.1016/j.jher.2024.08.001","url":null,"abstract":"<div><p>A number of viscosity and flow curve models can be used to numerically investigate the non-Newtonian behavior of fluids. Although particle size, grain size distribution and concentration play a crucial role in determining the viscosity and flow behavior of suspensions and colloidal systems, they are either ignored or considered indirectly in almost all models. We present a mathematical extension of the widely used Cross flow curve model to account for the effect of concentration and particle size in modeling viscosity and flow curves. In particular, this study takes into account a variable total number of individual particles in unit volume, which is assumed to be constant in other models. The proposed extension allows the flow curve to model suspensions that are typically shear-thinning but can also be Newtonian, or shear-thickening for at different shear rates and concentrations. These considerations provide insight into studying and designing suspensions, colloidal systems, and other complex fluid–solid interactions.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570644324000418/pdfft?md5=9b18b482be513a6e7e882c767b78cb91&pid=1-s2.0-S1570644324000418-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Self-aeration on large dam spillways during major floods” [J. Hydro-Environ. Res. 54 (2024) 26–36] 对 "大洪水期间大型水坝溢洪道的自曝气 "的更正[J. Hydro-Environ. Res. 54 (2024) 26-36]
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-08-03 DOI: 10.1016/j.jher.2024.07.001
{"title":"Corrigendum to “Self-aeration on large dam spillways during major floods” [J. Hydro-Environ. Res. 54 (2024) 26–36]","authors":"","doi":"10.1016/j.jher.2024.07.001","DOIUrl":"10.1016/j.jher.2024.07.001","url":null,"abstract":"","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570644324000406/pdfft?md5=59d8c68d59ae372ded7ded47274f7cf8&pid=1-s2.0-S1570644324000406-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of river recreation safety using hydrodynamic model and fuzzy logic: A spatial river recreational index approach 利用水动力模型和模糊逻辑评估河流娱乐安全:空间河流娱乐指数方法
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-07-01 DOI: 10.1016/j.jher.2024.06.002
Siyoon Kwon , Il Won Seo , Byunguk Kim , Sung Hyun Jung , Young Do Kim
{"title":"Assessment of river recreation safety using hydrodynamic model and fuzzy logic: A spatial river recreational index approach","authors":"Siyoon Kwon ,&nbsp;Il Won Seo ,&nbsp;Byunguk Kim ,&nbsp;Sung Hyun Jung ,&nbsp;Young Do Kim","doi":"10.1016/j.jher.2024.06.002","DOIUrl":"https://doi.org/10.1016/j.jher.2024.06.002","url":null,"abstract":"<div><p>As demands for river recreational activities increases, assessing their safety has become essential to prevent accidents. The hydraulic conditions of the river critically influence the safety of in-water activities, such as sailing, paddling, and boating. Localized hazardous areas can emerge due to the spatial variability of hydraulic phenomena. This potential risk necessitates providing information about safe zones. Therefore, this study proposes a spatial river recreational index (SRRI) to assess the safety of river recreational activities over river spaces based on hydraulic factors. We reproduce the spatial distribution of the hydraulic parameters under various discharge conditions using a 3D hydrodynamic model and then estimate the SRRI by integrating all membership degrees and weights of these parameters using fuzzy synthetic evaluation (FSE). The application of the SRRI in the confluence of the Nakdong-Guemho River, South Korea, reveals that each hydraulic parameter contributes differently to safety levels, depending on discharge and morphological conditions. Specifically, the flow direction substantially decreases safety near the river confluence, whereas the water depth plays an important role in the meandering reach of the Nakdong River. Under high-flow conditions, velocity becomes a critical factor, especially for nonpowered activities (sailing and paddling/wading). The SRRI indicates that sailing is unsafe in the main flow zone and near the river confluence due to high sensitivity to discharge changes. In contrast, paddling/wading and leisure boating are less sensitive to discharge changes, allowing these activities to be partly allowable even under high-flow conditions, except in the deep-water zones of meandering reach. These results suggest that the SRRI can assist water recreational activity users in safely engaging in river recreational activities by providing spatial safety information based on various hydraulic conditions.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of density difference, discharge ratio and wind on the mixing at large river confluence 密度差、排流比和风力对大河汇流处混合的影响
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-06-29 DOI: 10.1016/j.jher.2024.06.001
Minjae Lee , Yong Sung Park , Joo Suk Ko , Suhyeok Choi , Siwan Lyu , Byunguk Kim
{"title":"The influence of density difference, discharge ratio and wind on the mixing at large river confluence","authors":"Minjae Lee ,&nbsp;Yong Sung Park ,&nbsp;Joo Suk Ko ,&nbsp;Suhyeok Choi ,&nbsp;Siwan Lyu ,&nbsp;Byunguk Kim","doi":"10.1016/j.jher.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.jher.2024.06.001","url":null,"abstract":"<div><p>Numerical simulations for a large river confluence were conducted to comprehend the influences of three factors: density difference, discharge ratio, and wind shear on tributary flow dispersion. The present study focused on the confluence channel of the Nakdong River and the Yangsan Stream in South Korea, with simulation conditions selected based on realistic conditions. Numerical results revealed that tributary flow can disperse upstream under high discharge ratio conditions, which becomes stronger with density stratification. In particular, when the tributary flow is denser than the mainstream, bathymetry around the junction determines the flowing direction of the density current. Thus, understanding tributary flow dispersion under varying conditions is vital due to its influence not only downstream but also upstream of the confluence. Additionally, wind shear impact on the mixing between mainstream and tributary flow is notable but less significant than density difference or discharge ratio.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信