Muhammad Farhan Ul Moazzam , Ghani Rahman , Sanghyun Kim , Hyun-Han Kwon , Nurullayev Mirolim Nosirovich
{"title":"Evaluation of meteorological drought and its characteristics in Northern Thailand from 1980 to 2016","authors":"Muhammad Farhan Ul Moazzam , Ghani Rahman , Sanghyun Kim , Hyun-Han Kwon , Nurullayev Mirolim Nosirovich","doi":"10.1016/j.jher.2025.100681","DOIUrl":null,"url":null,"abstract":"<div><div>Meteorological drought is characterized by prolonged periods of below-average precipitation and is a major environmental hazard that significantly affects agriculture, water resources and ecosystems. Drought assessment and understanding its patterns are important for effective water management and risk mitigation. This study aims to assess the spatiotemporal variability and characteristics of meteorological drought in Northern Thailand from 1980 to 2016, using precipitation and temperature data from 22 meteorological stations provided by the Thai Meteorological Department (TMD). We used the Standardized Precipitation Evapotranspiration Index (SPEI) to identify drought events and analyze their trends using Spearman’s Rho test. Additionally, we applied Run theory to quantify drought characteristics, including duration, severity and intensity. The novelty of this study lies in its comprehensive approach, integrating long-term climate data with advanced statistical methods to assess the impact of rising temperatures on drought frequency. The results revealed significant increasing trend in mean, minimum, and maximum temperatures across most meteorological stations, contributing to frequent drought events. Notably, severe droughts were observed during 1982–1983, 1986–1987, 1991–1993, 1997–1998, 2004–2005, 2009, and 2014–2016. Thus, these SPEI analysis highlights the growing influence of temperature-driven evapotranspiration which lead to soil moisture loss and crop failure. The insights from this study emphasizes on the need of proactive drought risk management and adaptation strategies particularly for agriculture sector. Future research should focus on assessing the socio-economic impacts of drought and developing predictive models for improved mitigation planning.</div></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"62 ","pages":"Article 100681"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644325000346","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Meteorological drought is characterized by prolonged periods of below-average precipitation and is a major environmental hazard that significantly affects agriculture, water resources and ecosystems. Drought assessment and understanding its patterns are important for effective water management and risk mitigation. This study aims to assess the spatiotemporal variability and characteristics of meteorological drought in Northern Thailand from 1980 to 2016, using precipitation and temperature data from 22 meteorological stations provided by the Thai Meteorological Department (TMD). We used the Standardized Precipitation Evapotranspiration Index (SPEI) to identify drought events and analyze their trends using Spearman’s Rho test. Additionally, we applied Run theory to quantify drought characteristics, including duration, severity and intensity. The novelty of this study lies in its comprehensive approach, integrating long-term climate data with advanced statistical methods to assess the impact of rising temperatures on drought frequency. The results revealed significant increasing trend in mean, minimum, and maximum temperatures across most meteorological stations, contributing to frequent drought events. Notably, severe droughts were observed during 1982–1983, 1986–1987, 1991–1993, 1997–1998, 2004–2005, 2009, and 2014–2016. Thus, these SPEI analysis highlights the growing influence of temperature-driven evapotranspiration which lead to soil moisture loss and crop failure. The insights from this study emphasizes on the need of proactive drought risk management and adaptation strategies particularly for agriculture sector. Future research should focus on assessing the socio-economic impacts of drought and developing predictive models for improved mitigation planning.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.