Journal of Hydro-environment Research最新文献

筛选
英文 中文
Assessment of river recreation safety using hydrodynamic model and fuzzy logic: A spatial river recreational index approach 利用水动力模型和模糊逻辑评估河流娱乐安全:空间河流娱乐指数方法
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-07-01 DOI: 10.1016/j.jher.2024.06.002
Siyoon Kwon , Il Won Seo , Byunguk Kim , Sung Hyun Jung , Young Do Kim
{"title":"Assessment of river recreation safety using hydrodynamic model and fuzzy logic: A spatial river recreational index approach","authors":"Siyoon Kwon ,&nbsp;Il Won Seo ,&nbsp;Byunguk Kim ,&nbsp;Sung Hyun Jung ,&nbsp;Young Do Kim","doi":"10.1016/j.jher.2024.06.002","DOIUrl":"https://doi.org/10.1016/j.jher.2024.06.002","url":null,"abstract":"<div><p>As demands for river recreational activities increases, assessing their safety has become essential to prevent accidents. The hydraulic conditions of the river critically influence the safety of in-water activities, such as sailing, paddling, and boating. Localized hazardous areas can emerge due to the spatial variability of hydraulic phenomena. This potential risk necessitates providing information about safe zones. Therefore, this study proposes a spatial river recreational index (SRRI) to assess the safety of river recreational activities over river spaces based on hydraulic factors. We reproduce the spatial distribution of the hydraulic parameters under various discharge conditions using a 3D hydrodynamic model and then estimate the SRRI by integrating all membership degrees and weights of these parameters using fuzzy synthetic evaluation (FSE). The application of the SRRI in the confluence of the Nakdong-Guemho River, South Korea, reveals that each hydraulic parameter contributes differently to safety levels, depending on discharge and morphological conditions. Specifically, the flow direction substantially decreases safety near the river confluence, whereas the water depth plays an important role in the meandering reach of the Nakdong River. Under high-flow conditions, velocity becomes a critical factor, especially for nonpowered activities (sailing and paddling/wading). The SRRI indicates that sailing is unsafe in the main flow zone and near the river confluence due to high sensitivity to discharge changes. In contrast, paddling/wading and leisure boating are less sensitive to discharge changes, allowing these activities to be partly allowable even under high-flow conditions, except in the deep-water zones of meandering reach. These results suggest that the SRRI can assist water recreational activity users in safely engaging in river recreational activities by providing spatial safety information based on various hydraulic conditions.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"55 ","pages":"Pages 30-45"},"PeriodicalIF":2.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of density difference, discharge ratio and wind on the mixing at large river confluence 密度差、排流比和风力对大河汇流处混合的影响
IF 2.4 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-06-29 DOI: 10.1016/j.jher.2024.06.001
Minjae Lee , Yong Sung Park , Joo Suk Ko , Suhyeok Choi , Siwan Lyu , Byunguk Kim
{"title":"The influence of density difference, discharge ratio and wind on the mixing at large river confluence","authors":"Minjae Lee ,&nbsp;Yong Sung Park ,&nbsp;Joo Suk Ko ,&nbsp;Suhyeok Choi ,&nbsp;Siwan Lyu ,&nbsp;Byunguk Kim","doi":"10.1016/j.jher.2024.06.001","DOIUrl":"https://doi.org/10.1016/j.jher.2024.06.001","url":null,"abstract":"<div><p>Numerical simulations for a large river confluence were conducted to comprehend the influences of three factors: density difference, discharge ratio, and wind shear on tributary flow dispersion. The present study focused on the confluence channel of the Nakdong River and the Yangsan Stream in South Korea, with simulation conditions selected based on realistic conditions. Numerical results revealed that tributary flow can disperse upstream under high discharge ratio conditions, which becomes stronger with density stratification. In particular, when the tributary flow is denser than the mainstream, bathymetry around the junction determines the flowing direction of the density current. Thus, understanding tributary flow dispersion under varying conditions is vital due to its influence not only downstream but also upstream of the confluence. Additionally, wind shear impact on the mixing between mainstream and tributary flow is notable but less significant than density difference or discharge ratio.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"56 ","pages":"Pages 1-15"},"PeriodicalIF":2.4,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141543762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field monitoring and modelling of sediment transport, hydraulics and hydroabrasion at Sediment Bypass Tunnels 沉积物旁路隧道沉积物迁移、水力学和水力侵蚀的实地监测与建模
IF 2.8 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-05-28 DOI: 10.1016/j.jher.2024.05.002
Ismail Albayrak , Romeo Arnold , Dila Demiral , Mohammadreza Maddahi , Robert M. Boes
{"title":"Field monitoring and modelling of sediment transport, hydraulics and hydroabrasion at Sediment Bypass Tunnels","authors":"Ismail Albayrak ,&nbsp;Romeo Arnold ,&nbsp;Dila Demiral ,&nbsp;Mohammadreza Maddahi ,&nbsp;Robert M. Boes","doi":"10.1016/j.jher.2024.05.002","DOIUrl":"10.1016/j.jher.2024.05.002","url":null,"abstract":"<div><p>Sediment Bypass Tunnels (SBTs) are proven to be an effective measure to reduce or even stop reservoir sedimentation by bypassing sediment laden flows around reservoir dams to the downstream river reach. They are mostly used in Switzerland, Japan, and Taiwan. However, hydraulic and sedimentological operating conditions and the resistance of the invert materials against hydroabrasive erosion affect their cost-effectiveness. Hydroabrasion is a pressing issue at SBTs, other hydraulic structures and steep bedrock rivers exposed to high sediment transport rates under supercritical flow conditions. The present study was therefore conducted to address this issue by aiming at improving knowledge on abrasion mechanics and calibrating a mechanistic saltation abrasion model enhanced by <span>Demiral-Yüzügüllü (2021)</span>. To this end, the abrasion resistance of fourteen different invert materials installed at Solis, Pfaffensprung and Runcahez SBTs in Switzerland was quantified by annual 3D laser scanning and the hydraulic conditions and sediment transport rates were regularly monitored between 2017 and 2021. The analysis of invert scans and hydraulic conditions revealed that Prandtl’s first and second kinds of secondary currents occurring in the bends and straight sections of the SBTs, respectively, and the observed abrasion patterns were strongly interrelated. The tested potassium aluminate cement and steel fibre concretes, granite, cast basalt and steel plates had better abrasion resistance against impact of sediment-laden flows compared to other materials. Sediment mineralogical composition i.e., bulk hardness relative to the invert material properties significantly affected hydroabrasion. The enhanced abrasion prediction model was calibrated with the present data and a quasi-constant abrasion coefficient of <em>k</em><sub><em>v</em></sub> = (4.8 ± 2.2) × 10<sup>4</sup> was obtained. The enhanced model is well-suited for both laboratory and field scales. The present findings will contribute to the sustainable utilization and operational safety of hydraulic structures, optimization of SBT and reservoir operations regarding bypassing efficiency and reservoir lifetime and modelling of bedrock river erosion.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"55 ","pages":"Pages 1-19"},"PeriodicalIF":2.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570644324000224/pdfft?md5=55de5a9b0b5e8c91c60c272f35d22ab0&pid=1-s2.0-S1570644324000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring spatiotemporal changes in urban flood vulnerability of Peninsular Malaysia from satellite nighttime light data 从卫星夜间光照数据监测马来西亚半岛城市洪水脆弱性的时空变化
IF 2.8 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-05-26 DOI: 10.1016/j.jher.2024.05.003
Ghaith Falah Ziarh , Eun-Sung Chung , Ashraf Dewan , Md Asaduzzaman , Mohammed Magdy Hamed , Zafar Iqbal , Shamsuddin Shahid
{"title":"Monitoring spatiotemporal changes in urban flood vulnerability of Peninsular Malaysia from satellite nighttime light data","authors":"Ghaith Falah Ziarh ,&nbsp;Eun-Sung Chung ,&nbsp;Ashraf Dewan ,&nbsp;Md Asaduzzaman ,&nbsp;Mohammed Magdy Hamed ,&nbsp;Zafar Iqbal ,&nbsp;Shamsuddin Shahid","doi":"10.1016/j.jher.2024.05.003","DOIUrl":"https://doi.org/10.1016/j.jher.2024.05.003","url":null,"abstract":"<div><p>Urban flood vulnerability monitoring requires a large amount of socioeconomic and environmental data collected at regular time intervals. However, collecting such a large volume of data poses a significant constraint in assessing changes in flood vulnerability. This study proposed a novel method to monitor spatiotemporal changes in urban flood vulnerability from satellite nighttime light (NTL) data. Peninsular Malaysia was chosen as the research region as floods are the most devastating and recurrent phenomena in the region. The study developed a flood vulnerability index (FVI) based on socioeconomic and environmental data from a single year. This FVI was then linked to NTL data using an Adaptive neuro-fuzzy inference system (ANFIS) machine learning algorithm. The model was calibrated and validated with administrative unit scale data and subsequently used to predict FVI at a spatial resolution of 10 km for 2000–2018 using NTL data. Finally, changes in estimated FVI at different grid points were evaluated using the Mann-Kendall trend method to determine changes in flood vulnerability over time and space. Results showed a nonlinear relationship between NTL and flood vulnerability factors such as population density, Gini coefficient, and percentage of foreign nationals. The ANFIS technique performed well in estimating FVI from NTL data with a normalized root-mean-square error of 0.68 and Kling-Gupta Efficiency of 0.73. The FVI revealed a high vulnerability in the urbanized western coastal region (FVI ∼ 0.5 to 0.54), which matches well with major contributing regions to flood losses in Peninsular Malaysia. Trend assessment showed a significant increase in flood vulnerability in the study area from 2000 to 2018. The spatial distribution of the trend indicated an increase in FVI in the urbanized coastal plains, particularly in rapidly developing western and southern urban regions. The results indicate the potential of the technique in urban flood vulnerability assessment using freely available satellite NTL data.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"55 ","pages":"Pages 20-29"},"PeriodicalIF":2.8,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of the total flow resistance in emergent and submerged rigid canopy flows 新兴和沉没刚性冠层流中总流阻的实验研究
IF 2.8 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-05-01 DOI: 10.1016/j.jher.2024.05.001
Emre Haspolat, Mete Koken
{"title":"Experimental investigation of the total flow resistance in emergent and submerged rigid canopy flows","authors":"Emre Haspolat,&nbsp;Mete Koken","doi":"10.1016/j.jher.2024.05.001","DOIUrl":"10.1016/j.jher.2024.05.001","url":null,"abstract":"<div><p>In canopy flows, flow resistance mainly originates from vegetation drag and depends on vegetation characteristics and flow conditions. In the present study, a series of experiments were performed in various hydraulic scenarios with high stem Reynolds numbers (2641 <span><math><mo>≤</mo></math></span> Re<sub>d</sub> <span><math><mo>≤</mo></math></span> 17333) using relatively sparse rigid canopies, represented with four different dimensionless vegetation densities (0.0044, 0.0098, 0.0174 and 0.0392), on a smooth bed. A novel drag plate mechanism was developed to measure the total flow resistance due to the emergent and submerged vegetation arrays in a staggered pattern under subcritical flow conditions. Manning’s roughness coefficient and Darcy–Weisbach friction factor were adopted to represent the total flow resistance in the analyses. Simple empirical relationships based on roughness concentration and submergence ratio were derived to determine the total flow resistance parameters within a broad range of stem Reynolds numbers. Although relationships were proposed in a simple form to be used for direct practical applications, they show similar or better performance in the prediction of total flow resistance parameters than the existing equations in the literature, which require considerable computational effort. Additionally, analyses demonstrated that the results of the present study and those of similar studies regarding canopy flow resistance are in good agreement. Accordingly, the novel drag plate looks promising for measuring flow resistance due to vegetation and bed conditions similar to those in nature.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"54 ","pages":"Pages 37-52"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-aeration on large dam spillways during major floods 大洪水期间大型水坝溢洪道的自曝气功能
IF 2.8 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-03-16 DOI: 10.1016/j.jher.2024.03.002
Hubert Chanson
{"title":"Self-aeration on large dam spillways during major floods","authors":"Hubert Chanson","doi":"10.1016/j.jher.2024.03.002","DOIUrl":"https://doi.org/10.1016/j.jher.2024.03.002","url":null,"abstract":"<div><p>In a spillway chute flow, the upstream flow is typically non-aerated and the flow becomes self-aerated when the turbulent stresses acting next to the water surface exceeds the combined resistance of gravity and surface tension. The inception region of air entrainment is a rapidly-varied region characterised by the transition from a monophase water to two-phase air–water flow. In this contribution, field observations were conducted at large dam spillways during major flood events, with a focus on prototype data for discharges between 100 m<sup>3</sup>/s and 6,000 m<sup>3</sup>/s and Reynolds numbers between 2.6 × 10<sup>6</sup> to 1.1 × 10<sup>8</sup>. The onset of self-aeration was a complicated three-dimensional transient process, and the dimensionless location of the inception region was a function of the Reynolds number. Surface velocities obtained with an optical technique showed that the streamwise surface velocities were close to theoretical estimates, and the streamwise surface turbulent intensities in excess of 100 %, consistent with self-aerated measurements in laboratory. The current findings yield a couple of seminal questions: (a) what do we know about prototype spillway operation during major floods? (b) how large the Reynolds number of a prototype flow needs to be truly representative of large dam spillway self-aerated flows during major flood events?</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"54 ","pages":"Pages 26-36"},"PeriodicalIF":2.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140191987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of turbulent flow induced by particle sedimentation using RIM-PIV 利用 RIM-PIV 研究颗粒沉积引起的湍流
IF 2.8 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-03-16 DOI: 10.1016/j.jher.2024.03.001
Eiji Harada, Takumi Tazaki, Hitoshi Gotoh
{"title":"Investigation of turbulent flow induced by particle sedimentation using RIM-PIV","authors":"Eiji Harada,&nbsp;Takumi Tazaki,&nbsp;Hitoshi Gotoh","doi":"10.1016/j.jher.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.jher.2024.03.001","url":null,"abstract":"<div><p>The spatiotemporal structure of the flow field during particle–cloud sedimentation has not been sufficiently investigated. In this study, experiments on the sedimentation process of particle clouds in water are conducted using hydrogel particles with a refractive index similar to that of water as the settling particles. The flow field during the sedimentation process of particle clouds in water is measured using particle image velocimetry (PIV). Although the measurement conditions in this study are restricted to one condition owing to the limitations of the measurable area by our PIV system and the available hydrogel particles, the measurement target is novel because it has not been measured so far. The spatiotemporal structure of the turbulent flows is investigated by analyzing the turbulent flows induced by the sedimentation particles using the PIV system. Furthermore, the turbulent structure of the vortex formed by particle sedimentation is examined.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"54 ","pages":"Pages 13-25"},"PeriodicalIF":2.8,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140163505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deciphering the effect of variation in slope on flow characteristics in a vertical slot fishway 解读坡度变化对垂直缝隙鱼道水流特性的影响
IF 2.8 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-03-01 DOI: 10.1016/j.jher.2024.02.005
Hao Yuan , Boyu Chen , Qian Sun , Chunhang Xie , Xiaolong He
{"title":"Deciphering the effect of variation in slope on flow characteristics in a vertical slot fishway","authors":"Hao Yuan ,&nbsp;Boyu Chen ,&nbsp;Qian Sun ,&nbsp;Chunhang Xie ,&nbsp;Xiaolong He","doi":"10.1016/j.jher.2024.02.005","DOIUrl":"https://doi.org/10.1016/j.jher.2024.02.005","url":null,"abstract":"<div><p>The effects of a vertical slot fishway slope (with slope values from 1.5% to 6%) on a flow field are numerically investigated, using a re-normalization group <em>k</em> – <em>ε</em> model. The distribution of the velocity, turbulence kinetic energy (<em>TKE</em>), average energy dissipation rate per unit volume (<em>E</em>), and vorticity for different slopes are systemically explored. The results indicate that, with an increase in slope, the appearance of downward flow in conjunction with an increase in vertical velocity results in three-dimensional flow characteristics. The recirculation region in <em>H</em><sub>s</sub>, at a 6.0% slope, was 20.9% less than that at a 1.5% slope. Meanwhile, the flow velocity in the vertical slot region grew with increasing slope, which would limit the passage of fish with burst speed lower than the velocity in the vertical slot region. The <em>TKE</em> and <em>E</em> may locally exceed the threshold at larger slopes. Furthermore, vorticity distribution shows little variability with increasing slope, but may interfere with the equilibrium of the fish in the vertical slot region. In addition, the change in water level has little effect on the flow field, which is changed by the increase in slope. These findings can aid vertical slot fishway designs especially in terms of the efficiency of fish passage.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"54 ","pages":"Pages 1-12"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spur dike layouts impact on upstream flow conditions during flood wave movement 支堤布局对洪波运动时上游水流状况的影响
IF 2.8 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-03-01 DOI: 10.1016/j.jher.2024.02.004
Shabnam Moghispour , Salah Kouchakzadeh
{"title":"Spur dike layouts impact on upstream flow conditions during flood wave movement","authors":"Shabnam Moghispour ,&nbsp;Salah Kouchakzadeh","doi":"10.1016/j.jher.2024.02.004","DOIUrl":"https://doi.org/10.1016/j.jher.2024.02.004","url":null,"abstract":"<div><p>Despite the widespread application of spur dikes in river training projects, the performance of the structure during flood events and its impacts on unsteady flow conditions have rarely been studied. In this experimental investigation, the influences of twelve unsubmerged unilateral and bilateral spur dike layouts on upstream flow conditions during flood movements were examined. Three hydrographs with varying unsteadiness intensities were generated and applied to all layout tests, including the no-spur condition for comparison purposes. The results revealed that discharge directly affected changes in flow depth upstream of the spur dike, while the flow rate trend exerted inverse influences. The Keulegan-Carpenter number was modified to assess the impact of unsteadiness intensity on the rating curve loop. Stage hysteresis analysis demonstrated an increase of more than thirty times compared to the no-spur scenario, highlighting the elevated risk of flooding in the upstream reach while delaying peak flood arrival time. This has implications for flood risk management and warning programs. The results underscore the significance of considering not only peak discharge but also unsteadiness intensity in spur dike design.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"53 ","pages":"Pages 44-57"},"PeriodicalIF":2.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on surface wave interaction with submerged tensioned barriers using IoT image processing 利用物联网图像处理技术对表面波与水下张力屏障相互作用的实验研究
IF 2.8 3区 环境科学与生态学
Journal of Hydro-environment Research Pub Date : 2024-02-20 DOI: 10.1016/j.jher.2024.02.003
Cheng Bi , Yong Jia Toh , Adrian Wing-Keung Law , Mao See Wu
{"title":"Experimental study on surface wave interaction with submerged tensioned barriers using IoT image processing","authors":"Cheng Bi ,&nbsp;Yong Jia Toh ,&nbsp;Adrian Wing-Keung Law ,&nbsp;Mao See Wu","doi":"10.1016/j.jher.2024.02.003","DOIUrl":"10.1016/j.jher.2024.02.003","url":null,"abstract":"<div><p>The present study investigated experimentally the dynamic interactions between surface waves and submerged vertical tensioned barriers with full and partial penetrations. The range of tension for the barrier was set within the flexible membrane regime in the experiments which measurements have not been reported in the literature so far. In addition, an extensive Internet of Things (IoT) system with five GoPro cameras was developed for the measurements to quantify both the surface wave transformation as well as dynamic response of the barrier. The cameras were synchronized through the IoT system to cover the entire wave flume, and the recorded videos were converted to spatial and temporal data using image processing techniques. The experimental results were found to agree with the analytical predictions based on the linear wave theory reasonably well. In particular, the measured reduction in the tensioning effect on the wave transmission and reflection with decreased barrier length was in close argument with the predictions. Similar good agreement was also observed for the dynamic response of the tensioned barrier during the wave interaction. However, additional energy loss was noted in the experiments possibly due to energy dissipation at the boundary ends of the experimental barrier and wave-induced flow separation with partial penetration which are not considered in the analytical analysis.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"53 ","pages":"Pages 28-43"},"PeriodicalIF":2.8,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139924981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信