Biomolecular NMR Assignments最新文献

筛选
英文 中文
Chemical shift assignments of dsRBD1 and linker region of R2D2, a siRNA binding protein in the Drosophila RNAi pathway 果蝇RNAi通路中siRNA结合蛋白dsRBD1和R2D2连接区域的化学位移定位。
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-07-05 DOI: 10.1007/s12104-023-10143-5
Ramdas Aute, Mandar V. Deshmukh
{"title":"Chemical shift assignments of dsRBD1 and linker region of R2D2, a siRNA binding protein in the Drosophila RNAi pathway","authors":"Ramdas Aute,&nbsp;Mandar V. Deshmukh","doi":"10.1007/s12104-023-10143-5","DOIUrl":"10.1007/s12104-023-10143-5","url":null,"abstract":"<div><p>In the model organism <i>Drosophila melanogaster</i>, one of the Dicer homologs, Dcr-2, initiates the RNA interference pathway by cleaving long double-stranded RNA into small interfering RNA (siRNA). The Dcr-2:R2D2 heterodimer subsequently binds to the 21-nucleotide siRNA to form the R2D2:Dcr-2 Initiator (RDI) complex, which is critical for initiating the assembly of the RNA-induced silencing complex containing guide siRNA strand. During RDI complex formation, R2D2 senses the stability of the 5′ end of the siRNA and a 5′-phosphate group, although the underlying mechanism of siRNA asymmetry sensing and 5′-phosphate recognition by R2D2 is elusive. In this study, we present nearly complete chemical shift assignments of the backbone and the side chain of a construct that comprises the N-terminus dsRBD1 and linker of R2D2 (~ 10.3 kDa; henceforth: R2D2D1L). Our study would further aid in the structural and functional characterization of R2D2.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"211 - 215"},"PeriodicalIF":0.9,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10110774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone 1H, 15N and 13C resonance assignments for dengue NS2B without the NS3 protease cofactor region in detergent micelles 洗涤剂胶束中不含NS3蛋白酶辅因子区的登革NS2B的主链1H、15N和13C共振分配
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-07-05 DOI: 10.1007/s12104-023-10142-6
Qingxin Li, Hui Qi Ng, Ying Ru Loh, CongBao Kang
{"title":"Backbone 1H, 15N and 13C resonance assignments for dengue NS2B without the NS3 protease cofactor region in detergent micelles","authors":"Qingxin Li,&nbsp;Hui Qi Ng,&nbsp;Ying Ru Loh,&nbsp;CongBao Kang","doi":"10.1007/s12104-023-10142-6","DOIUrl":"10.1007/s12104-023-10142-6","url":null,"abstract":"<div><p>Dengue virus is an important human pathogen affecting people especially in tropical and subtropical regions. Its genome encodes seven non-structural proteins that are important for viral assembly and replication. Dengue NS2B is a membrane protein containing four transmembrane helices and involved in protein-protein interactions. Its transmembrane helices are critical for location of NS2B on the cell membrane while one cytoplasmic region composed of approximately 40 amino acids serves as a cofactor of viral NS3 protease by forming a tight complex with the N-terminal region of NS3. Here, we report the backbone resonance assignments for a dengue NS2B construct referred to as mini-NS2B containing only the transmembrane regions without NS3 cofactor region in detergent micelles. Mini-NS2B exhibits well-dispersed cross-peaks in the <sup>1</sup>H-<sup>15</sup>N-HSQC spectrum and contains four helices in solution. The available mini-NS2B and its assignment will be useful for determining the structure of NS2B and identifying small molecules binding to the transmembrane regions.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"205 - 209"},"PeriodicalIF":0.9,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71908985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C, and 15N resonance assignments of SarA monomer from Staphylococcus aureus in complex with DNA 金黄色葡萄球菌SarA单体与DNA复合物的1H、13C和15N共振归属
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-07-05 DOI: 10.1007/s12104-023-10140-8
Dihong Fu, Bo Duan, Xianzhi Dong, Bin Xia
{"title":"1H, 13C, and 15N resonance assignments of SarA monomer from Staphylococcus aureus in complex with DNA","authors":"Dihong Fu,&nbsp;Bo Duan,&nbsp;Xianzhi Dong,&nbsp;Bin Xia","doi":"10.1007/s12104-023-10140-8","DOIUrl":"10.1007/s12104-023-10140-8","url":null,"abstract":"<div><p>SarA is a global transcription regulator in <i>S. aureus</i> which regulates the expression of over 120 genes related to quorum sensing, biofilm synthesis, drug resistance and many other important physiological processes during host infection. SarA can bind to the promoter region of <i>agr</i> and other target genes to activate or repress the transcription. The crystal structure of SarA uncovered a MarR protein-like conformation with two symmetrical winged helix domains, while its DNA binding mechanism is still unknown. We have constructed a monomeric DNA binding domain of SarA (SarA<sup>ΔN19</sup>) for the study of the interaction between SarA and DNA with NMR spectroscopy. Here, we report the <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N NMR assignment of SarA<sup>ΔN19</sup>/DNA complex which is the first step towards further structure and function analysis.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"193 - 197"},"PeriodicalIF":0.9,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71908986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resonance assignments of the PUB domain of the RNF31 protein RNF31蛋白PUB结构域的共振配位。
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-07-03 DOI: 10.1007/s12104-023-10139-1
Lanlan Song, Fumei Zhong, Xiaoming Tu, Jiahai Zhang
{"title":"Resonance assignments of the PUB domain of the RNF31 protein","authors":"Lanlan Song,&nbsp;Fumei Zhong,&nbsp;Xiaoming Tu,&nbsp;Jiahai Zhang","doi":"10.1007/s12104-023-10139-1","DOIUrl":"10.1007/s12104-023-10139-1","url":null,"abstract":"<div><p>E3 ubiquitin protein ligase RNF31 is present in human proteins and is involved in linear ubiquitin chain assembly complex (LUBAC) activity and cell growth. RNF31 is involved in ubiquitination, which is the post-translational modification of proteins. Ubiquitin molecules connect with amino acid residues of target proteins under the action of ubiquitin-activating enzyme E1, ubiquitin binding enzyme E2 and ubiquitin ligase E3, so as to achieve certain physiological functions. The abnormal expression of ubiquitination promotes the formation of cancer. In studies of breast cancer, RNF31 mRNA levels were found to be higher in cancer cells than in other tissues. The PUB domain of RNF31 is the binding site of the ubiquitin thioesterase otulin. Here, we report the backbone and side-chain resonance assignments of the PUB domain of RNF31 and study the backbone relaxation of the domain. These studies will contribute to further understanding of the structural and functional relationship of RNF31 protein, which may also be a target for drug research.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"189 - 192"},"PeriodicalIF":0.9,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9731209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Backbone resonance assignments of the C-terminal region of human translation initiation factor eIF4B 人翻译起始因子eIF4B c端区域的主链共振分配。
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-06-27 DOI: 10.1007/s12104-023-10141-7
Somnath Mondal, Sabrina Rousseau, Vincent Talenton, Cheikh Ahmadou Bamba Thiam, Mikayel Aznauryan, Cameron D. Mackereth
{"title":"Backbone resonance assignments of the C-terminal region of human translation initiation factor eIF4B","authors":"Somnath Mondal,&nbsp;Sabrina Rousseau,&nbsp;Vincent Talenton,&nbsp;Cheikh Ahmadou Bamba Thiam,&nbsp;Mikayel Aznauryan,&nbsp;Cameron D. Mackereth","doi":"10.1007/s12104-023-10141-7","DOIUrl":"10.1007/s12104-023-10141-7","url":null,"abstract":"<div><p>Translation initiation in eukaryotes is an early step in protein synthesis, requiring multiple factors to recruit the ribosomal small subunit to the mRNA 5’ untranslated region. One such protein factor is the eukaryotic translation initiation factor 4B (eIF4B), which increases the activity of the eIF4A RNA helicase, and is linked to cell survival and proliferation. We report here the protein backbone chemical shift assignments corresponding to the C-terminal 279 residues of human eIF4B. Analysis of the chemical shift values identifies one main helical region in the area previously linked to RNA binding, and confirms that the overall C-terminal region is intrinsically disordered.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"199 - 203"},"PeriodicalIF":0.9,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10045915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMR resonance assignments of 18.5 kDa complex of Arabidopsis thaliana DRB7.2:DRB4 interaction domains 拟南芥DRB7.2:DRB4相互作用结构域18.5kDa复合物的NMR共振归属。
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-05-31 DOI: 10.1007/s12104-023-10137-3
Sneha Paturi, Mandar V. Deshmukh
{"title":"NMR resonance assignments of 18.5 kDa complex of Arabidopsis thaliana DRB7.2:DRB4 interaction domains","authors":"Sneha Paturi,&nbsp;Mandar V. Deshmukh","doi":"10.1007/s12104-023-10137-3","DOIUrl":"10.1007/s12104-023-10137-3","url":null,"abstract":"<div><p>In higher eukaryotes, the dsRNA binding proteins (dsRBPs) assist the corresponding Dicer in the cleavage of dsRNA precursors to effect post-transcriptional gene regulation through RNA interference. In contrast, the DRB7.2:DRB4 complex in <i>Arabidopsis thaliana</i> acts as a potent inhibitor of Dicer-like 3 (DCL3) processing by sequestering endogenous inverted-repeat dsRNA precursors. DRB7.2 possesses a single dsRNA Binding Domain (dsRBD) flanked by unstructured N- and C-terminal regions. Whereas, DRB4 has two concatenated N-terminal dsRBDs and a long unstructured C-terminus harboring a small domain of unidentified function, D3. Here, we present near-complete backbone and partial side chain assignments of the interaction domains, DRB7.2M (i.e., DRB7.2 (71–162)) and DRB4D3 (i.e., DRB4 (294–355)) as a complex. Our findings establish the groundwork for future structural, dynamic, and functional research on DRB7.2 and DRB4, and provide clues for the endo-IR pathway in plants.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"173 - 178"},"PeriodicalIF":0.9,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10236393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1H, 13C and 15N backbone and sidechain assignment of the Burkholderia mallei acyl carrier protein 槌状伯克霍尔德菌酰基载体蛋白的1H、13C和15N主链和侧链分配
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-05-26 DOI: 10.1007/s12104-023-10136-4
Srdan Matosin, Patrick D. Fischer, Maxim A. Droemer, Eric Baggs, Abu Sayeed Chowdhury, Isidoro Tavares, Scott B. Ficarro, Lisa Rose Warner, Haribabu Arthanari, Rajesh Nagarajan
{"title":"1H, 13C and 15N backbone and sidechain assignment of the Burkholderia mallei acyl carrier protein","authors":"Srdan Matosin,&nbsp;Patrick D. Fischer,&nbsp;Maxim A. Droemer,&nbsp;Eric Baggs,&nbsp;Abu Sayeed Chowdhury,&nbsp;Isidoro Tavares,&nbsp;Scott B. Ficarro,&nbsp;Lisa Rose Warner,&nbsp;Haribabu Arthanari,&nbsp;Rajesh Nagarajan","doi":"10.1007/s12104-023-10136-4","DOIUrl":"10.1007/s12104-023-10136-4","url":null,"abstract":"<div><p>Acyl carrier proteins (ACPs) are universally conserved proteins amongst different species and are involved in fatty acid synthesis. Bacteria utilize ACPs as acyl carriers and donors for the synthesis of products such as endotoxins or acyl homoserine lactones (AHLs), which are used in quorum sensing mechanisms. In this study, wehave expressed isotopically labeled holo-ACP from <i>Burkholderia mallei</i> in <i>Escherichia coli</i> to assign 100% of non-proline backbone amide (HN) resonances, 95.5% of aliphatic carbon resonances and 98.6% of aliphatic hydrogen sidechain resonances.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"167 - 171"},"PeriodicalIF":0.9,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71909879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete non-proline backbone resonance assignments of the S. aureus neutrophil serine protease inhibitor, EapH1 金黄色葡萄球菌中性粒细胞丝氨酸蛋白酶抑制剂EapH1的完全非脯氨酸骨干共振分配
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-05-10 DOI: 10.1007/s12104-023-10131-9
Nitin Mishra, Indrani Pal, Alvaro I. Herrera, Abhinav Dubey, Haribabu Arthanari, Brian V. Geisbrecht, Om Prakash
{"title":"Complete non-proline backbone resonance assignments of the S. aureus neutrophil serine protease inhibitor, EapH1","authors":"Nitin Mishra,&nbsp;Indrani Pal,&nbsp;Alvaro I. Herrera,&nbsp;Abhinav Dubey,&nbsp;Haribabu Arthanari,&nbsp;Brian V. Geisbrecht,&nbsp;Om Prakash","doi":"10.1007/s12104-023-10131-9","DOIUrl":"10.1007/s12104-023-10131-9","url":null,"abstract":"<div><p>The <i>S. aureus</i> extracellular adherence protein (Eap) and its homologs, EapH1 and EapH2, serve roles in evasion of the human innate immune system. EapH1 binds with high-affinity and inhibits the neutrophil azurophilic granule proteases neutrophil elastase, cathepsin-G and proteinase-3. Previous structural studies using X-ray crystallography have shown that EapH1 binds to neutrophil elastase and cathepsin-G using a globally similar binding mode. However, whether the same holds true in solution is unknown and whether the inhibitor experiences dynamic changes following binding remains uncertain. To facilitate solution-phase structural and biochemical studies of EapH1 and its complexes with neutrophil granule proteases, we have characterized EapH1 by multidimensional NMR spectroscopy. Here we report a total of 100% of the non-proline backbone resonance assignments of EapH1 with BMRB accession number 50,304.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"129 - 134"},"PeriodicalIF":0.9,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10131-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4433032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Solution-state NMR assignment and secondary structure propensity of the full length and minimalistic-truncated prefibrillar monomeric form of biofilm forming functional amyloid FapC from Pseudomonas aeruginosa 铜绿假单胞菌形成功能性淀粉样蛋白FapC的生物膜全长和纤原前单体形式的溶液态核磁共振分配和二级结构倾向。
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-05-10 DOI: 10.1007/s12104-023-10135-5
Chang-Hyeock Byeon, Pang C. Wang, In-Ja L. Byeon, Ümit Akbey
{"title":"Solution-state NMR assignment and secondary structure propensity of the full length and minimalistic-truncated prefibrillar monomeric form of biofilm forming functional amyloid FapC from Pseudomonas aeruginosa","authors":"Chang-Hyeock Byeon,&nbsp;Pang C. Wang,&nbsp;In-Ja L. Byeon,&nbsp;Ümit Akbey","doi":"10.1007/s12104-023-10135-5","DOIUrl":"10.1007/s12104-023-10135-5","url":null,"abstract":"<div><p>Functional bacterial amyloids provide structural scaffolding to bacterial biofilms. In contrast to the pathological amyloids, they have a role in vivo and are tightly regulated. Their presence is essential to the integrity of the bacterial communities surviving in biofilms and may cause serious health complications. Targeting amyloids in biofilms could be a novel approach to prevent chronic infections. However, structural information is very scarce on them in both soluble monomeric and insoluble fibrillar forms, hindering our molecular understanding and strategies to fight biofilm related diseases. Here, we present solution-state NMR assignment of 250 amino acid long biofilm-forming functional-amyloid FapC from <i>Pseudomonas aeruginosa</i>. We studied full-length (FL) and shorter minimalistic-truncated (L2R3C) FapC constructs without the signal-sequence that is required for secretion. 91% and 100% backbone NH resonance assignments for FL and L2R3C constructs, respectively, indicate that soluble monomeric FapC is predominantly disordered, with sizeable secondary structural propensities mostly as PP2 helices, but also as α-helices and β-sheets highlighting hotspots for fibrillation initiation interface. A shorter construct showing almost identical NMR chemical shifts highlights the promise of utilizing it for more demanding solid-state NMR studies that require methods to alleviate signal redundancy due to almost identical repeat units. This study provides key NMR resonance assignments for future structural studies of soluble, pre-fibrillar and fibrillar forms of FapC.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 2","pages":"159 - 165"},"PeriodicalIF":0.9,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9440635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Solution NMR backbone assignment of the SASH1 SLy proteins associated disordered region (SPIDER) SASH1 SLy蛋白相关紊乱区(SPIDER)的溶液核磁共振骨架分配
IF 0.9 4区 生物学
Biomolecular NMR Assignments Pub Date : 2023-05-08 DOI: 10.1007/s12104-023-10134-6
Christopher M. Clements, Beat Vögeli, Yiqun G. Shellman, Morkos A. Henen
{"title":"Solution NMR backbone assignment of the SASH1 SLy proteins associated disordered region (SPIDER)","authors":"Christopher M. Clements,&nbsp;Beat Vögeli,&nbsp;Yiqun G. Shellman,&nbsp;Morkos A. Henen","doi":"10.1007/s12104-023-10134-6","DOIUrl":"10.1007/s12104-023-10134-6","url":null,"abstract":"<div><p>SASH1 is a scaffold protein with context-dependent biological functions in cell adhesion, tumor metastasis, lung development, and pigmentation. As a member of the SLy protein family, it contains the conserved SLY, SH3, and SAM domains. The 19 kDa SLY domain harbors over 70% of the SASH1 variants associated with pigmentation disorders. However, its solution structure or dynamics have not been investigated yet, and its exact position in the sequence is not clearly defined. Based on the bioinformatic and experimental evidence, we propose renaming this region to the <u>S</u>Ly <u>P</u>roteins Assoc<u>i</u>ated <u>D</u>isorder<u>e</u>d <u>R</u>egion (SPIDER) and defining the exact position to be amino acids 400–554 of SASH1. We have previously identified a variant in this region linked to a pigmentation disorder, S519N. Here, we used a novel deuteration technique, a suite of TROSY-based 3D NMR experiments, and a high-quality HNN to obtain near complete solution backbone assignment of SASH1’s SPIDER. A comparison with the chemical shifts of non-variant (S519) SPIDER shows that the S519N substitution does not alter the free form solution structural propensities of SPIDER. This assignment is the first step to characterize the role of SPIDER in SASH1-mediated cellular functions and provides a model for the future study of sister SPIDER domains in the SLy protein family.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"151 - 157"},"PeriodicalIF":0.9,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10134-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4356446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信