人类 SERF2 的骨架 1H、13C 和 15N 化学位移分布图

IF 0.8 4区 生物学 Q4 BIOPHYSICS
Bikash R. Sahoo, Vivekanandan Subramanian, James C.A. Bardwell
{"title":"人类 SERF2 的骨架 1H、13C 和 15N 化学位移分布图","authors":"Bikash R. Sahoo,&nbsp;Vivekanandan Subramanian,&nbsp;James C.A. Bardwell","doi":"10.1007/s12104-024-10167-5","DOIUrl":null,"url":null,"abstract":"<div><p>Human small EDRK-rich factor protein SERF2 is a cellular driver of protein amyloid formation, a process that has been linked to neurodegenerative diseases including Alzheimer’s and Parkinson’s disease. SERF2 is a 59 amino acid protein, highly charged, and well conserved whose structure and physiological function is unclear. SERF family proteins including human SERF2 have shown a tendency to form fuzzy complexes with misfolded proteins such as α-Synuclein which has been linked to Parkinson’s disease. SERF family proteins have been recently identified to bind nucleic acids, but the binding mechanism(s) remain enigmatic. Here, using multidimensional solution NMR, we report the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C chemical shift assignments (~ 86% of backbone resonance assignments) for human SERF2. TALOS-N predicted secondary structure of SERF2 showed three very short helices (3–4 residues long) in the N-terminal region of the protein and a long helix in the C-terminal region spanning residues 37–46 which is consistent with the helical content indicated by circular dichroism spectroscopy. Paramagnetic relaxation enhancement NMR analysis revealed that a short C-terminal region E53-K55 is in the proximity of the N-terminus. Having the backbone assignment of SERF2 allowed us to probe its interaction with α-Synuclein and to identify the residues in SERF2 binding interfaces that likely promote α-Synuclein aggregation.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backbone 1H, 13C, and 15N chemical shift assignments for human SERF2\",\"authors\":\"Bikash R. Sahoo,&nbsp;Vivekanandan Subramanian,&nbsp;James C.A. Bardwell\",\"doi\":\"10.1007/s12104-024-10167-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human small EDRK-rich factor protein SERF2 is a cellular driver of protein amyloid formation, a process that has been linked to neurodegenerative diseases including Alzheimer’s and Parkinson’s disease. SERF2 is a 59 amino acid protein, highly charged, and well conserved whose structure and physiological function is unclear. SERF family proteins including human SERF2 have shown a tendency to form fuzzy complexes with misfolded proteins such as α-Synuclein which has been linked to Parkinson’s disease. SERF family proteins have been recently identified to bind nucleic acids, but the binding mechanism(s) remain enigmatic. Here, using multidimensional solution NMR, we report the <sup>1</sup>H, <sup>15</sup>N, and <sup>13</sup>C chemical shift assignments (~ 86% of backbone resonance assignments) for human SERF2. TALOS-N predicted secondary structure of SERF2 showed three very short helices (3–4 residues long) in the N-terminal region of the protein and a long helix in the C-terminal region spanning residues 37–46 which is consistent with the helical content indicated by circular dichroism spectroscopy. Paramagnetic relaxation enhancement NMR analysis revealed that a short C-terminal region E53-K55 is in the proximity of the N-terminus. Having the backbone assignment of SERF2 allowed us to probe its interaction with α-Synuclein and to identify the residues in SERF2 binding interfaces that likely promote α-Synuclein aggregation.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-024-10167-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-024-10167-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

人类富含 EDRK 的小因子蛋白 SERF2 是蛋白质淀粉样蛋白形成的细胞驱动因素,这一过程与包括阿尔茨海默氏症和帕金森氏症在内的神经退行性疾病有关。SERF2 是一种 59 个氨基酸的蛋白质,带高电荷,其结构和生理功能尚不清楚。包括人类 SERF2 在内的 SERF 家族蛋白显示出与折叠错误的蛋白质(如与帕金森病有关的 α-突触核蛋白)形成模糊复合物的倾向。最近发现 SERF 家族蛋白能与核酸结合,但其结合机制仍是个谜。在这里,我们利用多维溶液核磁共振,报告了人类 SERF2 的 1H、15N 和 13C 化学位移分配(约占骨干共振分配的 86%)。TALOS-N 预测的 SERF2 二级结构显示,该蛋白的 N 端区域有三个非常短的螺旋(3-4 个残基长),C 端区域有一个长螺旋,跨越 37-46 个残基,这与圆二色性光谱显示的螺旋含量一致。顺磁弛豫增强核磁共振分析表明,短 C 端区域 E53-K55 位于 N 端附近。有了 SERF2 的骨架分配,我们就能探究它与α-突触核蛋白的相互作用,并确定 SERF2 结合界面中可能促进α-突触核蛋白聚集的残基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Backbone 1H, 13C, and 15N chemical shift assignments for human SERF2

Backbone 1H, 13C, and 15N chemical shift assignments for human SERF2

Backbone 1H, 13C, and 15N chemical shift assignments for human SERF2

Human small EDRK-rich factor protein SERF2 is a cellular driver of protein amyloid formation, a process that has been linked to neurodegenerative diseases including Alzheimer’s and Parkinson’s disease. SERF2 is a 59 amino acid protein, highly charged, and well conserved whose structure and physiological function is unclear. SERF family proteins including human SERF2 have shown a tendency to form fuzzy complexes with misfolded proteins such as α-Synuclein which has been linked to Parkinson’s disease. SERF family proteins have been recently identified to bind nucleic acids, but the binding mechanism(s) remain enigmatic. Here, using multidimensional solution NMR, we report the 1H, 15N, and 13C chemical shift assignments (~ 86% of backbone resonance assignments) for human SERF2. TALOS-N predicted secondary structure of SERF2 showed three very short helices (3–4 residues long) in the N-terminal region of the protein and a long helix in the C-terminal region spanning residues 37–46 which is consistent with the helical content indicated by circular dichroism spectroscopy. Paramagnetic relaxation enhancement NMR analysis revealed that a short C-terminal region E53-K55 is in the proximity of the N-terminus. Having the backbone assignment of SERF2 allowed us to probe its interaction with α-Synuclein and to identify the residues in SERF2 binding interfaces that likely promote α-Synuclein aggregation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信