Asia-Pacific Journal of Chemical Engineering最新文献

筛选
英文 中文
Synthesis of oxygen-rich functional groups biochar for high-efficiency adsorption of herbicide and as a potential carrier for pH-responsive slow release 合成富氧功能基团生物炭,用于高效吸附除草剂并作为潜在的 pH 值响应型缓释载体
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-07-01 DOI: 10.1002/apj.3113
Yufeng Chen, Fangge Zhu, Sijie Jiang, Guorong Shi, Mei'e Zhong
{"title":"Synthesis of oxygen-rich functional groups biochar for high-efficiency adsorption of herbicide and as a potential carrier for pH-responsive slow release","authors":"Yufeng Chen,&nbsp;Fangge Zhu,&nbsp;Sijie Jiang,&nbsp;Guorong Shi,&nbsp;Mei'e Zhong","doi":"10.1002/apj.3113","DOIUrl":"10.1002/apj.3113","url":null,"abstract":"<p>To improve the utilization rate of herbicides and reduce their environmental residues, it is urgent to develop a simple and low-cost method to prepare slow-release pesticides. In this study, a biochar (280CPFe) with a high surface area and rich oxygen-containing functional groups was synthesized by low temperature (280°C) boiling strategy, which was used as a carrier to prepare pH-responsive slow-release herbicide. The obtained biochar has a high adsorption capacity of 153.59 mg·g<sup>−1</sup> for quinclorac (QNC). The release rates of QNC-280CPFe are 21%, 56%, and 90% at the initial pH of 3, 5, and 11, respectively. The controlled release behavior of QNC-280CPFe is related to its adsorption mechanism, in which the pore filling and functional group adsorption are mainly responsible for the adsorption of QNC on 280CPFe. Compared with QNC alone, QNC-280CPFe slow-release herbicide has a good control effect on Barnyard grass but does not affect the normal growth of rice. Therefore, this study provides a simple, low-cost cost, and environmentally friendly biochar carrier for preparing slow-release herbicide, improving its utilization rate and reducing its environmental pollution risk.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-entropy configuration strategy boosts excellent rate performance of layered oxide for sodium-ion batteries 高熵配置策略提升了钠离子电池层状氧化物的卓越速率性能
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-06-30 DOI: 10.1002/apj.3116
Qiuyun Cai, Xiangyu Liu, Haonan Hu, Pengfei Wang, Min Jia, Xiaoyu Zhang
{"title":"High-entropy configuration strategy boosts excellent rate performance of layered oxide for sodium-ion batteries","authors":"Qiuyun Cai,&nbsp;Xiangyu Liu,&nbsp;Haonan Hu,&nbsp;Pengfei Wang,&nbsp;Min Jia,&nbsp;Xiaoyu Zhang","doi":"10.1002/apj.3116","DOIUrl":"10.1002/apj.3116","url":null,"abstract":"<p>Layered oxides are considered to be potential cathodes for sodium-ion batteries based on high theoretical capacity and ease of synthesis. However, the complex phase transition caused by interlayer sliding in layered oxides leads to poor cycling stability, which will hinder their further application. Here, we designed a newly O3-type layered cathode NaNi<sub>0.3</sub>Co<sub>0.2</sub>Cu<sub>0.1</sub>Mn<sub>0.2</sub>Ti<sub>0.2</sub>O<sub>2</sub> based on high-entropy to achieve highly reversible phase transition behavior. It reveals 132 mAh g<sup>−1</sup> at 0.2 C within 2–4 V increasing the energy density to 408 Wh kg<sup>−1</sup> and it shows an outstanding rate capability of 90 mAh g<sup>−1</sup> at 80 C (84.90% capacity retention after 1,500 cycles at 80 C). In-situ XRD shows that reasonable design of high-entropy components in layered material can achieve the purpose of delaying the occurrence of phase transition and DFT calculations show that the introduction of Co in transition metal layers can effectively improve the rate performance of the material. This work is of great significance in guiding the design and synthesis of highly stable layered cathode materials for sodium-ion batteries.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of ZrO2-NdO-based mixed nanomaterial using green capping agent and its functionalization as electrode material for energy devices: Pseudo capacitors and water splitting 使用绿色封端剂合成 ZrO2-NdO 基混合纳米材料并将其功能化作为能源设备的电极材料:伪电容器和水分离
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-06-30 DOI: 10.1002/apj.3119
Sundus Azhar, Khuram Shahzad Ahmad, Isaac Abrahams, Wang Lin, Ram K. Gupta, Munirah D. Albaqami, Saikh Mohammad, Mahwash Mahar Gul
{"title":"Synthesis of ZrO2-NdO-based mixed nanomaterial using green capping agent and its functionalization as electrode material for energy devices: Pseudo capacitors and water splitting","authors":"Sundus Azhar,&nbsp;Khuram Shahzad Ahmad,&nbsp;Isaac Abrahams,&nbsp;Wang Lin,&nbsp;Ram K. Gupta,&nbsp;Munirah D. Albaqami,&nbsp;Saikh Mohammad,&nbsp;Mahwash Mahar Gul","doi":"10.1002/apj.3119","DOIUrl":"10.1002/apj.3119","url":null,"abstract":"<p>This study investigates the environmentally friendly synthesis of ZrO<sub>2</sub>-NdO mixed nanomaterial using green reducing and capping agents derived from the plant <i>Amaranthus viridis</i>. X-ray diffraction (XRD) analysis confirmed the successful synthesis of the mixed nanomaterial, revealing an optical band gap of 2.5 eV. The morphology was characterized by spherical-shaped particles with an average size ranging from 66 to 77 nm. The synthesized ZrO<sub>2</sub>-NdO mixed nanomaterial was evaluated for its potential application as an electrode material in energy devices, specifically for pseudocapacitors and water splitting studies. Electrochemical performance was assessed using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) techniques. Notably, a specific capacitance of 573.5 F/g was achieved through CV at a scan rate of 2 mV/s. Fabricated electrocatalyst was further analyzed for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and the results showed better over potential value of 164 mV for HER studies. The stability analysis further endorsed the large-scale commercialization possibility of ZrO-NdO-based electrode material.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimization of air-cooled supercapacitor thermal management system based on the corner deflectors and the inclined inlet and outlet 基于角导流板和倾斜进出口的风冷超级电容器热管理系统的设计与优化
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-06-27 DOI: 10.1002/apj.3104
Chaoying Xu, Guofu Li, Dianbo Ruan
{"title":"Design and optimization of air-cooled supercapacitor thermal management system based on the corner deflectors and the inclined inlet and outlet","authors":"Chaoying Xu,&nbsp;Guofu Li,&nbsp;Dianbo Ruan","doi":"10.1002/apj.3104","DOIUrl":"10.1002/apj.3104","url":null,"abstract":"<p>In this paper, a novel air-cooled supercapacitor thermal management system (STMS) based on the corner deflectors and the inclined inlet and outlet was proposed. The temperature and velocity fields were simulated and analyzed by CFD. Moreover, the heat dissipation effect of different STMSs was analyzed against each other. The results showed that the STMS proposed had a better heat dissipation effect when the inclined angle of inlet and outlet was appropriate, in which the maximum temperature (<i>T</i><sub><i>max</i></sub>) and the maximum temperature difference (<i>ΔT</i><sub><i>max</i></sub>) of the module could be reduced by 10.3% and 34.6%. And it is shown that the structure with inclined inlet and outlet plays an important role for the heat dissipation capability of the STMS proposed. And it has experimentally proven its heat dissipation ability. Consequently, the impacts of inclined angle (<i>α</i>), monomer spacing (<i>d</i><sub><i>c</i></sub>), and the distance between monomer and module shell (<i>d</i><sub><i>x</i></sub>, <i>d</i><sub><i>y</i></sub>, and <i>d</i><sub><i>z</i></sub>) on the heat dissipation effect were deeply analyzed. For the STMS arranged in four rows and three columns, it had a better heat dissipation effect when inclined angle was in the range of 40° to 50°. The results showed that the structural parameters had a large influence on the <i>T</i><sub><i>max</i></sub> and <i>ΔT</i><sub><i>max</i></sub>. Besides, it had shown that the temperature curves of the <i>T</i><sub><i>max</i></sub> and <i>ΔT</i><sub><i>max</i></sub> had a main trend of “decreasing and then increasing” when the monomer spacing as well as the distance between monomer and module shell are taken from 1 mm to 5 mm. It implies that a small spacing (1 mm to 2 mm) will hinder the air circulation and reduce heat dissipation, and a large spacing (3 mm to 5 mm) will reduce the average flow rate of air and reduce the efficiency of heat transfer.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactive experimental study on microgroove structure and drag-reducing additives in rotating disk apparatus 旋转盘装置中的微槽结构与减阻添加剂的互动实验研究
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-06-22 DOI: 10.1002/apj.3112
Ailian Chang, Le Huang, Benqing Huang, Kambiz Vafai
{"title":"Interactive experimental study on microgroove structure and drag-reducing additives in rotating disk apparatus","authors":"Ailian Chang,&nbsp;Le Huang,&nbsp;Benqing Huang,&nbsp;Kambiz Vafai","doi":"10.1002/apj.3112","DOIUrl":"10.1002/apj.3112","url":null,"abstract":"<p>A series of interactive experiments are conducted to analyze the drag reduction technology with a rotating disk apparatus that combines microgroove structure and drag-reducing additives including polyethylene oxide (PEO), cetyltrimethyl ammonium chloride (CTAC), and sodium salicylate (NaSal). By varying the disk type, concentration of drag-reducing additives, temperature, and Reynolds number (<i>Re</i>), the corresponding drag reduction rates are obtained effectively. The experimental results indicate that adding CTAC strengthens the heat degradation and shear resistance of PEO; while PEO can enhance the ability of CTAC to form micellar structures and balance energy distribution at low concentrations. Moreover, the synergistic effect of these two additives presents a better drag reduction performance with a maximum drag reduction rate of 24.1%; while the microgroove structure enhances the effect of active drag reduction. Therefore, the combination of active and passive drag reduction technology broadens the application of energy saving and consumption reduction in hydraulic rotating machinery.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of HZSM-5 molecular sieve particles attrition behavior under fluidized conditions 流化条件下 HZSM-5 分子筛颗粒的损耗行为分析
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-06-18 DOI: 10.1002/apj.3111
Zhiwei Huang, Feng Gao, Yang Miao
{"title":"Analysis of HZSM-5 molecular sieve particles attrition behavior under fluidized conditions","authors":"Zhiwei Huang,&nbsp;Feng Gao,&nbsp;Yang Miao","doi":"10.1002/apj.3111","DOIUrl":"10.1002/apj.3111","url":null,"abstract":"<p>The attrition behavior of HZSM-5 zeolite catalyst particles at room temperature was investigated in a laboratory-scale fluidized bed. The effects of three fluidization conditions on particle attrition were investigated, and a new attrition model was proposed. The results demonstrate that the attrition rate is inversely proportional to the initial particle size and proportional to the apparent gas velocity. After increasing to 80 μm and .3 m/s respectively, they are no longer the main factor affecting attrition. The effect of bed pressure on attrition rate is nonlinear, and the lowest attrition rate is obtained when the diameter-height ratio is 1:1. Unsteady attrition stage can be divided into initial stage and deceleration stage. Surface delamination dominates particle attrition throughout the whole process, and bulk fracture is the dominant mechanism only in the deceleration stage. Based on the Gwyn equation, a new attrition model in the form of cubic polynomial is established with the ratio of total attrition rate to unstable attrition rate P as a parameter. The model has high accuracy and repeatability and is suitable for various fluidization conditions. It can effectively describe the attrition process and change rule of particles and reasonably predict the fluidization attrition rate of particles.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of palladium-based catalysts and use for depolymerization of larch bark tannins 钯基催化剂的制备及其在落叶松树皮单宁解聚中的应用
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-06-17 DOI: 10.1002/apj.3088
Nianci Liu, Te Li, Zhuorui Zhang, Ling Su, Guiquan Jiang
{"title":"Preparation of palladium-based catalysts and use for depolymerization of larch bark tannins","authors":"Nianci Liu,&nbsp;Te Li,&nbsp;Zhuorui Zhang,&nbsp;Ling Su,&nbsp;Guiquan Jiang","doi":"10.1002/apj.3088","DOIUrl":"10.1002/apj.3088","url":null,"abstract":"<p>In this study, we synthesized eight palladium-based catalysts using two carriers, ZrO<sub>2</sub> and MCM-41. These catalysts were used for the degradation of condensed tannins extracted from larch bark. The average polymerization degree and degradation rate of the products were used as indicators to evaluate the efficiency of degradation. The effects of different Pd:Cu loading ratios under the same carrier conditions and the effects of different carriers under the same Pd:Cu loading ratio were investigated. The results revealed that when the carrier was kept constant, the Pd:Cu ratio of 1:1 exhibited the highest efficiency in degrading condensed tannins. Moreover, when the Pd:Cu loading ratio was the same, the degradation efficiency was higher when ZrO<sub>2</sub> was used as the carrier. Based on these findings, the catalyst (Pd<sub>1</sub>-Cu<sub>1</sub>)<sub>5</sub>/ZrO<sub>2</sub> (where “1” are the molar ratios of Pd to Cu added during the preparation of the catalyst and where ‘5’ is the mass percentage of Pd/Cu metal to total catalyst, i.e., 5 wt%), with ZrO<sub>2</sub> as the carrier and a Pd:Cu ratio of 1:1, demonstrated the highest degradation efficiency, with a degradation rate of 73.89%. This catalyst successfully reduced the average polymerization degree of condensed tannins from 9.5 to 2.48.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141511854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of thiophene compounds from model fuel with supported copper on active carbon, adsorption kinetics, and isotherms 用活性炭上的支撑铜去除模型燃料中的噻吩化合物、吸附动力学和等温线
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-06-11 DOI: 10.1002/apj.3110
Bahador Kazemi, Haleh Golipour, Morteza Mafi, Babak Mokhtarani
{"title":"Removal of thiophene compounds from model fuel with supported copper on active carbon, adsorption kinetics, and isotherms","authors":"Bahador Kazemi,&nbsp;Haleh Golipour,&nbsp;Morteza Mafi,&nbsp;Babak Mokhtarani","doi":"10.1002/apj.3110","DOIUrl":"10.1002/apj.3110","url":null,"abstract":"<p>In this study, the adsorption of thiophene compounds (TCs), including thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT), from model fuels was investigated using modified activated carbon (AC). The model fuel, prepared as a single-solute model at a concentration of 2000 ppm based on a mixture concentration of 3000 ppm, served as the basis for the adsorption experiments. Additionally, an examination of thiophene adsorption from commercial fuels, specifically kerosene, was conducted. Experimental data were used to calculate correlated parameters of adsorption isotherms, kinetic models, and the Fisher factor. The pseudo-second-order model demonstrated the best fit to the experimental data. Notably, the adsorbent consisting of 10% Cu<sup>+</sup> supported on acid-washed activated carbon (A1CN10) exhibited the highest adsorption capacity for TCs, achieving removal percentages of 78%, 96%, and 100% for T, BT, and DBT, respectively. Various methods were employed to investigate the physicochemical properties of the adsorbents, including N<sub>2</sub> adsorption–desorption surface analysis (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). Furthermore, the regeneration of the adsorbent was studied using two techniques: agitation and ultrasound.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and composition of mesophase pitch prepared from aromatic-rich fluid catalytic cracking slurry under different process conditions 不同工艺条件下富芳烃流体催化裂化浆料制备的介相沥青的结构和组成
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-06-07 DOI: 10.1002/apj.3108
Tao Yu, Yu Ma, Xiaoyan Yu, Muhammad Riwan, Mingzhi Wang, Xiaolong Zhou
{"title":"Structure and composition of mesophase pitch prepared from aromatic-rich fluid catalytic cracking slurry under different process conditions","authors":"Tao Yu,&nbsp;Yu Ma,&nbsp;Xiaoyan Yu,&nbsp;Muhammad Riwan,&nbsp;Mingzhi Wang,&nbsp;Xiaolong Zhou","doi":"10.1002/apj.3108","DOIUrl":"10.1002/apj.3108","url":null,"abstract":"<p>The high aromaticity of fluidized catalytic cracking (FCC) slurry makes it a superior raw material for the production of high-performance carbon materials. In this study, direct thermal polycondensation of aromatic-rich FCC slurries is conducted to synthesize mesophase pitches with a significant anisotropic content. The effects of stirring speed and the pressurized-atmospheric two-stage reaction on the structure and composition of the products are investigated. Thermal stability analysis using thermogravimetric (TG) test, observation of mesophase content and optical structure through polarized light microscopy, characterization of material composition and molecular structure via Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance hydrogen spectrum (<sup>1</sup>H NMR), as well as comparison of crystal structures using X-ray diffraction (XRD) are performed. The experimental results demonstrate that an increase in the stirring rate leads to a more homogeneous molecular distribution within the reaction system, thereby facilitating molecular contact polycondensation and promoting mesophase growth and development. Furthermore, the pressurized-atmospheric two-stage reaction process also contributes to mesophase development, resulting in products with more cycloalkane structure, improved thermal stability, and optimized optical structure transitioning from mosaic to flow or even domain.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141373853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of nitric oxide reduction via CeZrOx/Cu-SSZ-39 hybrid catalyst: Improving activity and hydrothermal stability 通过 CeZrOx/Cu-SSZ-39 混合催化剂增强一氧化氮还原:提高活性和水热稳定性
IF 1.4 4区 工程技术
Asia-Pacific Journal of Chemical Engineering Pub Date : 2024-05-31 DOI: 10.1002/apj.3109
Yunhui Li, Kunting Li, Xingdong Zhu, Xinyan Zhang, Xin Zhang
{"title":"Enhancement of nitric oxide reduction via CeZrOx/Cu-SSZ-39 hybrid catalyst: Improving activity and hydrothermal stability","authors":"Yunhui Li,&nbsp;Kunting Li,&nbsp;Xingdong Zhu,&nbsp;Xinyan Zhang,&nbsp;Xin Zhang","doi":"10.1002/apj.3109","DOIUrl":"10.1002/apj.3109","url":null,"abstract":"<p>This study aimed to improve the catalytic activity and hydrothermal stability of Cu-SSZ-39 zeolite by coupling it with cerium zirconium oxides (CeZrO<sub>x</sub>), which possesses excellent oxidizing ability, and a hybrid catalyst CeZrO<sub>x</sub>/Cu-SSZ-39 was prepared. It is found that it exhibited enhanced low-temperature activity, high-temperature activity, and a wider effective temperature range compared to Cu-SSZ-39. Characterization results showed that the CeZrO<sub>x</sub>/Cu-SSZ-39 catalyst had a higher concentration of active Cu<sup>2+</sup> ion species and improved redox properties, which could potentially promote the NH<sub>3</sub>-SCR reaction. Additionally, the CeZrO<sub>x</sub>/Cu-SSZ-39 catalyst had increased chemisorbed oxygen species on its surface, facilitating the oxidation of NO to NO<sub>2</sub> and enhancing the rate of the SCR reaction. Moreover, even after undergoing hydrothermal aging treatment, the CeZrO<sub>x</sub>/Cu-SSZ-39 catalyst exhibited superior catalytic activity and improved hydrothermal stability, surpassing the performance of Cu-SSZ-39. It is found the CeZrO<sub>x</sub> coupling allowed the hybrid catalyst to maintain a better specific surface area and pore structure during hydrothermal aging, resulting in reduced activity loss. Therefore, the addition of CeZrO<sub>x</sub> enhanced the NH<sub>3</sub>-SCR activity of Cu-SSZ-39 zeolite, leading to improved catalytic activity and hydrothermal stability. CeZrO<sub>x</sub>/Cu-SSZ-39 catalyst has shown promising aspect for reducing NOx emissions from diesel vehicle exhaust.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141194734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信