配煤对高钙铁煤粘温特性调节机理的研究

IF 1.6 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Xuefei Liu, Fenghai Li, Mingjie Ma, Yong Wang, Ziqiang Yang, Yitian Fang
{"title":"配煤对高钙铁煤粘温特性调节机理的研究","authors":"Xuefei Liu,&nbsp;Fenghai Li,&nbsp;Mingjie Ma,&nbsp;Yong Wang,&nbsp;Ziqiang Yang,&nbsp;Yitian Fang","doi":"10.1002/apj.3197","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Entrained-flow bed gasification was an important way to realize clean coal conversion. However, the high calcium–iron coal ash had a low flow temperature, low viscosity, and strong fluctuations in viscosity, which severely affected the service life of the gasifier. It was necessary to regulate its ash fusion temperature and viscosity–temperature characteristics (AFV). In the paper, the AFV of Datong coal (DTC, a high calcium–iron coal) and its regulation mechanism were investigated by ash fusion temperature tester, high-temperature viscometer, Raman spectrometer, differential scanning calorimetry, X-ray diffractometer, FactSage software, and activation energy calculation. With the increasing Pingdingshan coal (PDS, a high silicon–aluminum coal) mass ratio, the AFV of DTC mixtures increased, and the viscosity fluctuation of DTC mixtures disappeared gradually. When PDS mass ratio is in the range of 18%–24%, the flow temperature and viscosity of DTC ash were 1375°C–1400°C and 18–22 Pa·s, respectively. The increasing PDS mass ratio, the formation of high melting point anorthite and its increasing content, the polymerization degree of DTC mixed ash increasing, and a gradual increase in activation energy as well as their corresponding crystallization behavior led to the increase in the AFV. The mineral transformations and the position variation in the ternary phase diagram of ash compositions with PDS addition by FactSage calculation also explained the variations in the viscosity–temperature characteristics.</p>\n </div>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"20 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the Regulation Mechanisms of Viscosity–Temperature Characteristics of High Calcium–Iron Coal by Coal Blending\",\"authors\":\"Xuefei Liu,&nbsp;Fenghai Li,&nbsp;Mingjie Ma,&nbsp;Yong Wang,&nbsp;Ziqiang Yang,&nbsp;Yitian Fang\",\"doi\":\"10.1002/apj.3197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Entrained-flow bed gasification was an important way to realize clean coal conversion. However, the high calcium–iron coal ash had a low flow temperature, low viscosity, and strong fluctuations in viscosity, which severely affected the service life of the gasifier. It was necessary to regulate its ash fusion temperature and viscosity–temperature characteristics (AFV). In the paper, the AFV of Datong coal (DTC, a high calcium–iron coal) and its regulation mechanism were investigated by ash fusion temperature tester, high-temperature viscometer, Raman spectrometer, differential scanning calorimetry, X-ray diffractometer, FactSage software, and activation energy calculation. With the increasing Pingdingshan coal (PDS, a high silicon–aluminum coal) mass ratio, the AFV of DTC mixtures increased, and the viscosity fluctuation of DTC mixtures disappeared gradually. When PDS mass ratio is in the range of 18%–24%, the flow temperature and viscosity of DTC ash were 1375°C–1400°C and 18–22 Pa·s, respectively. The increasing PDS mass ratio, the formation of high melting point anorthite and its increasing content, the polymerization degree of DTC mixed ash increasing, and a gradual increase in activation energy as well as their corresponding crystallization behavior led to the increase in the AFV. The mineral transformations and the position variation in the ternary phase diagram of ash compositions with PDS addition by FactSage calculation also explained the variations in the viscosity–temperature characteristics.</p>\\n </div>\",\"PeriodicalId\":49237,\"journal\":{\"name\":\"Asia-Pacific Journal of Chemical Engineering\",\"volume\":\"20 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3197\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3197","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

携流床气化是实现洁净煤转化的重要途径。但高钙铁煤灰的流动温度低、粘度低、粘度波动大,严重影响了气化炉的使用寿命。有必要对其熔灰温度和粘温特性(AFV)进行调节。采用灰熔融温度测试仪、高温粘度计、拉曼光谱仪、差示扫描量热仪、x射线衍射仪、FactSage软件和活化能计算等方法,研究了大同煤(DTC)的AFV及其调控机理。随着平顶山煤(PDS,一种高硅铝煤)质量比的增大,DTC混合物的AFV增大,DTC混合物的粘度波动逐渐消失。PDS质量比为18% ~ 24%时,DTC灰分的流动温度为1375℃~ 1400℃,粘度为18 ~ 22 Pa·s。PDS质量比的增加、高熔点钙长石的形成及其含量的增加、DTC混合灰聚合程度的增加、活化能的逐渐增加以及相应的结晶行为导致AFV的增加。通过FactSage计算PDS加入后灰分三元相图中矿物的转变和位置的变化也解释了粘温特性的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation on the Regulation Mechanisms of Viscosity–Temperature Characteristics of High Calcium–Iron Coal by Coal Blending

Entrained-flow bed gasification was an important way to realize clean coal conversion. However, the high calcium–iron coal ash had a low flow temperature, low viscosity, and strong fluctuations in viscosity, which severely affected the service life of the gasifier. It was necessary to regulate its ash fusion temperature and viscosity–temperature characteristics (AFV). In the paper, the AFV of Datong coal (DTC, a high calcium–iron coal) and its regulation mechanism were investigated by ash fusion temperature tester, high-temperature viscometer, Raman spectrometer, differential scanning calorimetry, X-ray diffractometer, FactSage software, and activation energy calculation. With the increasing Pingdingshan coal (PDS, a high silicon–aluminum coal) mass ratio, the AFV of DTC mixtures increased, and the viscosity fluctuation of DTC mixtures disappeared gradually. When PDS mass ratio is in the range of 18%–24%, the flow temperature and viscosity of DTC ash were 1375°C–1400°C and 18–22 Pa·s, respectively. The increasing PDS mass ratio, the formation of high melting point anorthite and its increasing content, the polymerization degree of DTC mixed ash increasing, and a gradual increase in activation energy as well as their corresponding crystallization behavior led to the increase in the AFV. The mineral transformations and the position variation in the ternary phase diagram of ash compositions with PDS addition by FactSage calculation also explained the variations in the viscosity–temperature characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
111
期刊介绍: Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration. Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信