Cellular Oncology最新文献

筛选
英文 中文
Neuropilin-2 acts a critical determinant for epithelial-to-mesenchymal transition and aggressive behaviors of human head and neck cancer. Neuropilin-2是人类头颈部癌症上皮-间质转化和侵袭行为的关键决定因素。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-10-03 DOI: 10.1007/s13402-023-00878-7
Min-Hye Ahn, Ji-Hoon Kim, Su-Jung Choi, Hyun-Ji Kim, Dong-Guk Park, Kyu-Young Oh, Hye-Jung Yoon, Seong-Doo Hong, Jae-Il Lee, Ji-Ae Shin, Sung-Dae Cho
{"title":"Neuropilin-2 acts a critical determinant for epithelial-to-mesenchymal transition and aggressive behaviors of human head and neck cancer.","authors":"Min-Hye Ahn, Ji-Hoon Kim, Su-Jung Choi, Hyun-Ji Kim, Dong-Guk Park, Kyu-Young Oh, Hye-Jung Yoon, Seong-Doo Hong, Jae-Il Lee, Ji-Ae Shin, Sung-Dae Cho","doi":"10.1007/s13402-023-00878-7","DOIUrl":"10.1007/s13402-023-00878-7","url":null,"abstract":"<p><strong>Purpose: </strong>Neuropilin-2 (NRP2) is a multifunctional single-pass transmembrane receptor that binds to two disparate ligands, namely, vascular endothelial growth factors (VEGFs) and semaphorins (SEMAs). It is reportedly involved in neuronal and vascular development. In this study, we uncovered the exact functional role of NRP2 and its molecular mechanism during aggressive behaviors and lymph node (LN) metastasis in human head and neck cancer (HNC) and identified algal methanol extract as a potential novel NRP2 inhibitor.</p><p><strong>Methods: </strong>In silico analyses and immunohistochemistry were used to investigate the relationship between NRP2 expression and the prognosis of HNC patients. The functional role of NRP2 on the proliferation, migration, invasion, and cancer stem cell (CSC) properties of HNC cells was examined by MTS, soft agar, clonogenic, transwell migration and invasion assays, and sphere formation assays. Signaling explorer antibody array, western blot, and qPCR were performed toward the investigation of a molecular mechanism that is related to NRP2.</p><p><strong>Results: </strong>NRP2 was highly expressed in HNC and positively correlated with LN metastasis and advanced tumor stage and size in patients. Using loss- or gain-of-function approaches, we found that NRP2 promoted the proliferative, migratory, and invasive capacities of human HNC cells. Furthermore, NRP2 regulated Sox2 expression to exhibit aggressiveness and CSC properties of human HNC cells. We demonstrated that p90 ribosomal S6 kinase 1 (RSK1) elevates the aggressiveness and CSC properties of human HNC cells, possibly by mediating NRP2 and Sox2. Zeb1 was necessary for executing the NRP2/RSK1/Sox2 signaling pathway during the induction of epithelial-to-mesenchymal transition (EMT) and aggressive behaviors of human HNC cells. Moreover, the methanol extract of Codium fragile (MECF) repressed NRP2 expression, inhibiting the RSK1/Sox2/Zeb1 axis, which contributed to the reduction of aggressive behaviors of human HNC cells.</p><p><strong>Conclusions: </strong>These findings suggest that NRP2 is a critical determinant in provoking EMT and aggressive behaviors in human HNC through the RSK1/Sox2/Zeb1 axis, and MECF may have the potential to be a novel NRP2 inhibitor for treating metastasis in HNC patients.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"497-511"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatitis B virus core protein stabilizes RANGAP1 to upregulate KDM2A and facilitate hepatocarcinogenesis. 乙型肝炎病毒核心蛋白稳定RANGAP1以上调KDM2A并促进肝癌发生。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-10-17 DOI: 10.1007/s13402-023-00889-4
Hong-Juan You, Li-Hong Ma, Xing Wang, Yu-Xin Wang, Huan-Yang Zhang, En-Si Bao, Yu-Jie Zhong, Xiang-Ye Liu, De-Long Kong, Kui-Yang Zheng, Fan-Yun Kong, Ren-Xian Tang
{"title":"Hepatitis B virus core protein stabilizes RANGAP1 to upregulate KDM2A and facilitate hepatocarcinogenesis.","authors":"Hong-Juan You, Li-Hong Ma, Xing Wang, Yu-Xin Wang, Huan-Yang Zhang, En-Si Bao, Yu-Jie Zhong, Xiang-Ye Liu, De-Long Kong, Kui-Yang Zheng, Fan-Yun Kong, Ren-Xian Tang","doi":"10.1007/s13402-023-00889-4","DOIUrl":"10.1007/s13402-023-00889-4","url":null,"abstract":"<p><strong>Purpose: </strong>As a vital component of the hepatitis B virus (HBV) nucleocapsid, HBV core protein (HBC) contributes to hepatocarcinogenesis. Here, we aimed to assess the effects of RANGAP1 and KDM2A on tumorigenesis induced by HBC.</p><p><strong>Methods: </strong>Co-immunoprecipitation (Co-IP) combined with mass spectrometry were utilized to identify the proteins with the capacity to interact with HBC. The gene and protein levels of RANGAP1 and KDM2A in hepatocellular carcinoma (HCC) and HBV-positive HCC tissues were evaluated using different cohorts. The roles of RANGAP1 and KDM2A in HCC cells mediated by HBC were investigated in vitro and in vivo. Co-IP and western blot were used to estimate the interaction of HBC with RANGAP1 and KDM2A and assess RANGAP1 stabilization regulated by HBC.</p><p><strong>Results: </strong>We discovered that HBC could interact with RANGAP1 and KDM2A, the levels of which were markedly elevated in HCC tissues. Relying on RANGAP1 and KDM2A, HBC facilitated HCC cell growth and migration. The increased stabilization of RANGAP1 mediated by HBC was relevant to the disruption of the interaction between RANGAP1 and an E3 ligase SYVN1. RANGAP1 interacted with KDM2A, and it further promoted KDM2A stabilization by disturbing the interaction between KDM2A and SYVN1. HBC enhanced the interaction of KDM2A with RANGAP1 and upregulated the expression of KDM2A via RANGAP1 in HCC cells.</p><p><strong>Conclusions: </strong>These findings demonstrate a novel mechanism by which HBC facilitates hepatocarcinogenesis. RANGAP1 and KDM2A could act as potential molecular targets for treating HBV-associated malignancy.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"639-655"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41240237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Notum enhances gastric cancer stem-like cell properties through upregulation of Sox2 by PI3K/AKT signaling pathway. Notum通过PI3K/AKT信号通路上调Sox2,增强癌症干细胞特性。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-09-26 DOI: 10.1007/s13402-023-00875-w
Yi Liu, Hui Chen, Lanshu Xiao, Ping Dong, Yanhui Ma, Yunlan Zhou, Junyao Yang, Bingxian Bian, Guohua Xie, Lei Chen, Lisong Shen
{"title":"Notum enhances gastric cancer stem-like cell properties through upregulation of Sox2 by PI3K/AKT signaling pathway.","authors":"Yi Liu, Hui Chen, Lanshu Xiao, Ping Dong, Yanhui Ma, Yunlan Zhou, Junyao Yang, Bingxian Bian, Guohua Xie, Lei Chen, Lisong Shen","doi":"10.1007/s13402-023-00875-w","DOIUrl":"10.1007/s13402-023-00875-w","url":null,"abstract":"<p><strong>Purpose: </strong>Considerable evidence suggests that tumor cells with stemness features contribute to initiation, progression, recurrence of gastric cancer (GC) and resistance to therapy, but involvement of underlying regulators and mechanisms remain largely unclear. However, the clinical significance and biological function of Notum in GC tumor sphere formation and tumorigenesis remain unclear.</p><p><strong>Methods: </strong>Bioinformatics analysis, RT-qPCR, western blot and imunohistochemistry staining were applied to characterize Notum expression in GC specimens. The early diagnostic value of Notum was analyzed by logistic regression analysis method. Cancer stemness assays were used in Notum knockdown and overexpressing cells in vitro and in vivo. RNA-seq was employed to reveal the downstream effectors of Notum.</p><p><strong>Results: </strong>Notum is highly expressed in early stage of GC patients and stem-like GC cells. For discriminating the early-stage and advanced GC patients, the joint analysis had a better diagnostic value. Overexpression of Notum markedly increased stemness features of GC cells to promote tumor sphere formation and tumorigenesis. Conversely, Notum knockdown attenuated the stem-like cell properties in vitro and in vivo. Mechanically, Notum upregulates Sox2 through activating the PI3K/AKT signaling pathway. Notum inhibitor Caffeine exhibited a potent inhibitory effect on stemness features by impairing the PI3K/AKT signaling pathway activity and targeting Sox2.</p><p><strong>Conclusion: </strong>Our findings confer a comprehensive and mechanistic function of Notum in GC tumor sphere formation and tumorigenesis that may provide a novel and promising target for early diagnosis and clinical therapy of GC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"463-480"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41136806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox signaling-mediated tumor extracellular matrix remodeling: pleiotropic regulatory mechanisms. 氧化还原信号介导的肿瘤细胞外基质重塑:多效性调节机制。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-10-04 DOI: 10.1007/s13402-023-00884-9
Guowen Liu, Bowen Li, Siyuan Qin, Edouard C Nice, Jinlin Yang, Li Yang, Canhua Huang
{"title":"Redox signaling-mediated tumor extracellular matrix remodeling: pleiotropic regulatory mechanisms.","authors":"Guowen Liu, Bowen Li, Siyuan Qin, Edouard C Nice, Jinlin Yang, Li Yang, Canhua Huang","doi":"10.1007/s13402-023-00884-9","DOIUrl":"10.1007/s13402-023-00884-9","url":null,"abstract":"<p><strong>Background: </strong>The extracellular matrix (ECM), a fundamental constituent of all tissues and organs, is crucial for shaping the tumor microenvironment. Dysregulation of ECM remodeling has been closely linked to tumor initiation and progression, where specific signaling pathways, including redox signaling, play essential roles. Reactive oxygen species (ROS) are risk factors for carcinogenesis whose excess can facilitate the oxidative damage of biomacromolecules, such as DNA and proteins. Emerging evidence suggests that redox effects can aid the modification, stimulation, and degradation of ECM, thus affecting ECM remodeling. These alterations in both the density and components of the ECM subsequently act as critical drivers for tumorigenesis. In this review, we provide an overview of the functions and primary traits of the ECM, and it delves into our current understanding of how redox reactions participate in ECM remodeling during cancer progression. We also discuss the opportunities and challenges presented by clinical strategies targeting redox-controlled ECM remodeling to overcome cancer.</p><p><strong>Conclusions: </strong>The redox-mediated ECM remodeling contributes importantly to tumor survival, progression, metastasis, and poor prognosis. A comprehensive investigation of the concrete mechanism of redox-mediated tumor ECM remodeling and the combination usage of redox-targeted drugs with existing treatment means may reveal new therapeutic strategy for future antitumor therapies.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"429-445"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41155078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of molecular markers related to chemotherapy efficacy of hepatoid adenocarcinoma of the stomach. 胃类肝腺癌化疗疗效相关分子标志物的探讨。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-11-09 DOI: 10.1007/s13402-023-00892-9
Jingtao Wei, Ke Ji, Yue Zhang, Ji Zhang, Xiaojiang Wu, Xin Ji, Kai Zhou, Xuesong Yang, Hongfeng Lu, Anqiang Wang, Zhaode Bu
{"title":"Exploration of molecular markers related to chemotherapy efficacy of hepatoid adenocarcinoma of the stomach.","authors":"Jingtao Wei, Ke Ji, Yue Zhang, Ji Zhang, Xiaojiang Wu, Xin Ji, Kai Zhou, Xuesong Yang, Hongfeng Lu, Anqiang Wang, Zhaode Bu","doi":"10.1007/s13402-023-00892-9","DOIUrl":"10.1007/s13402-023-00892-9","url":null,"abstract":"<p><strong>Purpose: </strong>Preoperative neoadjuvant chemotherapy may not improve the prognosis of patients with hepatoid adenocarcinoma of the stomach (HAS), a rare pathological type of gastric cancer. Thus, the study aimed at the genomic and transcriptomic impacts of preoperative chemotherapy on HAS.</p><p><strong>Methods: </strong>Patients with HAS who underwent surgical resection at Peking University Cancer Hospital were retrospectively included in this study. Whole exome sequencing and transcriptome sequencing were performed on pre-chemotherapy, non-chemotherapy and post-chemotherapy samples. We then compared the alterations in molecular markers between the post-chemotherapy and non-chemotherapy groups, and between the chemotherapy-effective and chemotherapy-ineffective groups, respectively.</p><p><strong>Results: </strong>A total of 79 tumor samples from 72 patients were collected. Compared to the non-chemotherapy group, the mutation frequencies of several genes were changed after chemotherapy, including TP53. In addition, there was a significant increase in the frequency of frameshift mutations and cytosine transversion to adenine (C > A), appearance of COSMIC signature 6 and 14, and a reduced gene copy number amplification. Interestingly, the same phenomenon was observed in chemotherapy-ineffective patients. In addition, many HAS patients had ERBB2, FGFR2, MET and HGF gene amplification. Moreover, the expression of immune-related genes, especially those related to lymphocyte activation, was down-regulated after chemotherapy.</p><p><strong>Conclusion: </strong>Chemotherapy is closely associated with changes in the molecular characteristics of HAS. After chemotherapy, at genomic and transcriptome level, many features were altered. These changes may be molecular markers of poor chemotherapeutic efficacy and play an important role in chemoresistance in HAS. In addition, ERBB2, FGFR2, MET and HGF gene amplification may be potential therapeutic targets for HAS.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"677-693"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the lipid metabolic reprogramming of tumor-associated macrophages: A novel insight into cancer immunotherapy. 靶向肿瘤相关巨噬细胞的脂质代谢重编程:癌症免疫疗法的新见解。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-09-30 DOI: 10.1007/s13402-023-00881-y
Liang Li, Si-Rui Ma, Zi-Li Yu
{"title":"Targeting the lipid metabolic reprogramming of tumor-associated macrophages: A novel insight into cancer immunotherapy.","authors":"Liang Li, Si-Rui Ma, Zi-Li Yu","doi":"10.1007/s13402-023-00881-y","DOIUrl":"10.1007/s13402-023-00881-y","url":null,"abstract":"<p><strong>Background: </strong>Tumor-associated macrophages, as the major immunocytes in solid tumors, show divided loyalty and remarkable plasticity in tumorigenesis. Once the M2-to-M1 repolarization is achieved, they could be switched from the supporters for tumor development into the guardians for host immunity. Meanwhile, Lipid metabolic reprogramming is demonstrated to be one of the most important hallmarks of tumor-associated macrophages, which plays a decisive role in regulating their phenotypes and functions to promote tumorigenesis and immunotherapy resistance. Therefore, targeting the lipid metabolism of TAMs may provide a new direction for anti-tumor strategies.</p><p><strong>Conclusion: </strong>In this review, we first summarized the origins, classifications and general lipid metabolic process of TAMs. Then we discussed the currently available drugs and interventions that target lipid metabolic disorders of TAMs, including those targeting lipid uptake, efflux, lipolysis, FAO and lipid peroxidation. Besides, based on the recent research status, we summarized the present challenges for this cancer immunotherapy, including the precise drug delivery system, the lipid metabolic heterogeneity, and the intricate lipid metabolic interactions in the TME, and we also proposed corresponding possible solutions. Collectively, we hope this review will give researchers a better understanding of the lipid metabolism of TAMs and lead to the development of corresponding anti-tumor therapies in the future.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"415-428"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41169397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexation of histone deacetylase inhibitor belinostat to Cu(II) prevents premature metabolic inactivation in vitro and demonstrates potent anti-cancer activity in vitro and ex vivo in colon cancer. 组蛋白去乙酰化酶抑制剂贝利那司坦与Cu(II)的络合可防止体外过早代谢失活,并在癌症体内外显示出强大的抗癌活性。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-11-07 DOI: 10.1007/s13402-023-00882-x
Ellen Finnegan, Wei Ding, Ziga Ude, Sara Terer, Tadhg McGivern, Anna M Blümel, Grainne Kirwan, Xinxin Shao, Flavia Genua, Xiaofei Yin, Alexander Kel, Sarinj Fattah, Parvathi A Myer, Sally-Ann Cryan, Jochen H M Prehn, Darran P O'Connor, Lorraine Brennan, Gregory Yochum, Celine J Marmion, Sudipto Das
{"title":"Complexation of histone deacetylase inhibitor belinostat to Cu(II) prevents premature metabolic inactivation in vitro and demonstrates potent anti-cancer activity in vitro and ex vivo in colon cancer.","authors":"Ellen Finnegan, Wei Ding, Ziga Ude, Sara Terer, Tadhg McGivern, Anna M Blümel, Grainne Kirwan, Xinxin Shao, Flavia Genua, Xiaofei Yin, Alexander Kel, Sarinj Fattah, Parvathi A Myer, Sally-Ann Cryan, Jochen H M Prehn, Darran P O'Connor, Lorraine Brennan, Gregory Yochum, Celine J Marmion, Sudipto Das","doi":"10.1007/s13402-023-00882-x","DOIUrl":"10.1007/s13402-023-00882-x","url":null,"abstract":"<p><strong>Purpose: </strong>The histone deacetylase inhibitor (HDACi), belinostat, has had limited therapeutic impact in solid tumors, such as colon cancer, due to its poor metabolic stability. Here we evaluated a novel belinostat prodrug, copper-bis-belinostat (Cubisbel), in vitro and ex vivo, designed to overcome the pharmacokinetic challenges of belinostat.</p><p><strong>Methods: </strong>The in vitro metabolism of each HDACi was evaluated in human liver microsomes (HLMs) using mass spectrometry. Next, the effect of belinostat and Cubisbel on cell growth, HDAC activity, apoptosis and cell cycle was assessed in three colon cancer cell lines. Gene expression alterations induced by both HDACis were determined using RNA-Seq, followed by in silico analysis to identify master regulators (MRs) of differentially expressed genes (DEGs). The effect of both HDACis on the viability of colon cancer patient-derived tumor organoids (PDTOs) was also examined.</p><p><strong>Results: </strong>Belinostat and Cubisbel significantly reduced colon cancer cell growth mediated through HDAC inhibition and apoptosis induction. Interestingly, the in vitro half-life of Cubisbel was significantly longer than belinostat. Belinostat and its Cu derivative commonly dysregulated numerous signalling and metabolic pathways while genes downregulated by Cubisbel were potentially controlled by VEGFA, ERBB2 and DUSP2 MRs. Treatment of colon cancer PDTOs with the HDACis resulted in a significant reduction in cell viability and downregulation of stem cell and proliferation markers.</p><p><strong>Conclusions: </strong>Complexation of belinostat to Cu(II) does not alter the HDAC activity of belinostat, but instead significantly enhances its metabolic stability in vitro and targets anti-cancer pathways by perturbing key MRs in colon cancer. Complexation of HDACis to a metal ion might improve the efficacy of clinically used HDACis in patients with colon cancer.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"533-553"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71487970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibroblast subtypes in pancreatic cancer and pancreatitis: from mechanisms to therapeutic strategies. 胰腺癌和胰腺炎中的成纤维细胞亚型:从机制到治疗策略。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-09-18 DOI: 10.1007/s13402-023-00874-x
Huizhen Huang, Wanyi Lu, Xiuli Zhang, Jiachun Pan, Feng Cao, Li Wen
{"title":"Fibroblast subtypes in pancreatic cancer and pancreatitis: from mechanisms to therapeutic strategies.","authors":"Huizhen Huang, Wanyi Lu, Xiuli Zhang, Jiachun Pan, Feng Cao, Li Wen","doi":"10.1007/s13402-023-00874-x","DOIUrl":"10.1007/s13402-023-00874-x","url":null,"abstract":"<p><p>Excessive fibrosis is a predominant feature of pancreatic stroma and plays a crucial role in the development and progression of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). Emerging evidence showed diversity and heterogeneity of fibroblasts play crucial and somewhat contradictory roles, the interactions between fibroblasts and pancreatic cells or infiltrating immune cells are of great importance during PDAC and CP progression, with some promising therapeutic strategies being tested. Therefore, in this review, we describe the classification of fibroblasts and their functions in PDAC and pancreatitis, the mechanisms by which fibroblasts mediate the development and progression of PDAC and CP through direct or indirect interaction between fibroblast and pancreatic parenchymal cells, or by remodeling the pancreatic immune microenvironment mediates the development and progression of PDAC and CP. Finally, we summarized the current therapeutic strategies and agents that directly target subtypes of fibroblasts or interfere with their essential functions.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"383-396"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10291873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma cell signatures predict prognosis and treatment efficacy for lung adenocarcinoma. 浆细胞特征预测肺腺癌的预后和治疗效果。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-10-09 DOI: 10.1007/s13402-023-00883-w
Long Shu, Jun Tang, Shuang Liu, Yongguang Tao
{"title":"Plasma cell signatures predict prognosis and treatment efficacy for lung adenocarcinoma.","authors":"Long Shu, Jun Tang, Shuang Liu, Yongguang Tao","doi":"10.1007/s13402-023-00883-w","DOIUrl":"10.1007/s13402-023-00883-w","url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to identify key genes regulating tumor infiltrating plasma cells (PC) and provide new insights for innovative immunotherapy.</p><p><strong>Methods: </strong>Key genes related to PC were identified using machine learning in lung adenocarcinoma (LUAD) patients. A prognostic model called PC scores was developed using TCGA data and validated with GEO cohorts. We assessed the molecular background, immune features, and drug sensitivity of the high PC scores group. Real-time PCR was utilized to assess the expression of hub genes in both localized LUAD patients and LUAD cell lines.</p><p><strong>Results: </strong>We constructed PC scores based on seventeen PC-related hub genes (ELOVL6, MFI2, FURIN, DOK1, ERO1LB, CLEC7A, ZNF431, KIAA1324, NUCB2, TXNDC11, ICAM3, CR2, CLIC6, CARNS1, P2RY13, KLF15, and SLC24A4). Higher age, TNM stage, and PC scores independently predicted shorter overall survival. The AUC value of PC scores for one year, three years, and five years of overall survival were 0.713, 0.716, and 0.690, separately. The nomogram model that integrated age, stage, and PC scores showed significantly higher predictive value than stage alone (P < 0.01). High PC scores group exhibited an immune suppressing microenvironment with lower B, CD8 + T, CD4 + T, and dendritic cell infiltration. Docetaxel, gefitinib, and erlotinib had lower IC50 in high PC groups (P < 0.001). After validation through the local cohort and in vitro experiments, we ultimately confirmed three key potential targets: MFI2, KLF15, and CLEC7A.</p><p><strong>Conclusion: </strong>We proposed a prediction mode which can effectively identify high-risk LUAD patients and found three novel genes closely correlated with PC tumor infiltration.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"555-571"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41183947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cancer/testis-45A1 promotes cervical cancer cell tumorigenesis and drug resistance by activating oncogenic SRC and downstream signaling pathways. 癌症/testis-45A1通过激活致癌SRC和下游信号通路,促进宫颈癌症细胞的肿瘤发生和耐药性。
IF 6.6 2区 医学
Cellular Oncology Pub Date : 2024-04-01 Epub Date: 2023-11-04 DOI: 10.1007/s13402-023-00891-w
Mei Meng, Yan Guo, Yu Chen, Xu Li, Bin Zhang, Zhijia Xie, Juntao Liu, Zhe Zhao, Yuxi Liu, Tong Zhang, Yingnan Qiao, Bingxue Shang, Quansheng Zhou
{"title":"Cancer/testis-45A1 promotes cervical cancer cell tumorigenesis and drug resistance by activating oncogenic SRC and downstream signaling pathways.","authors":"Mei Meng, Yan Guo, Yu Chen, Xu Li, Bin Zhang, Zhijia Xie, Juntao Liu, Zhe Zhao, Yuxi Liu, Tong Zhang, Yingnan Qiao, Bingxue Shang, Quansheng Zhou","doi":"10.1007/s13402-023-00891-w","DOIUrl":"10.1007/s13402-023-00891-w","url":null,"abstract":"<p><strong>Background: </strong>Cancer/testis antigen-45A1 (CT45A1) is overexpressed in various types of cancer but is not expressed in healthy women. The role of CT45A1 in cervical cancer has not yet been described in the literature.</p><p><strong>Purpose: </strong>The aim of this research was to study the role of CT45A1 in cervical cancer progression and drug resistance, elucidate the mechanisms underlying CT45A1-mediated tumorigenesis and investigate CT45A1 as a biomarker for cervical cancer diagnosis, prognostic prediction, and targeted therapy.</p><p><strong>Methods: </strong>The CT45A1 levels in the tumors from cervical cancer patients were measured using immunohistochemical staining. The role and mechanisms underlying CT45A1-mediated cervical cancer cell tumor growth, invasion, and drug resistance were studied using xenograft mice, cervical cancer cells, immunohistochemistry, RNA-seq, real-time qPCR, Chromatin immunoprecipitation and Western blotting.</p><p><strong>Results: </strong>CT45A1 levels were notably high in the tumor tissues of human cervical cancer patients compared to the paracancerous tissues (p < 0.001). Overexpression of CT45A1 was closely associated with poor prognosis in cervical cancer patients. CT45A1 promoted cervical cancer cell tumor growth, invasion, neovascularization, and drug resistance. Mechanistically, CT45A1 promoted the expression of 128 pro-tumorigenic genes and concurrently activated key signaling pathways, including the oncogenic SRC, ERK, CREB, and YAP/TAZ signaling pathways. Furthermore, CT45A1-mediated tumorigenesis and drug resistance were markedly inhibited by the small molecule lycorine.</p><p><strong>Conclusion: </strong>CT45A1 promotes cervical cancer cell tumorigenesis, neovascularization, and drug resistance by activating oncogenic SRC and downstream tumorigenic signaling pathways. These findings provide new insight into the pathogenesis of cervical cancer and offer a new platform for the development of novel therapeutics against cervical cancer.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"657-676"},"PeriodicalIF":6.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71487969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信