Peiling Zhang, Shiping Chen, Jialiang Cai, Lina Song, Bing Quan, Jinglei Wan, Guiqi Zhu, Biao Wang, Yi Yang, Zhengjun Zhou, Tao Li, Zhi Dai
{"title":"GALNT6 drives lenvatinib resistance in hepatocellular carcinoma through autophagy and cancer-associated fibroblast activation.","authors":"Peiling Zhang, Shiping Chen, Jialiang Cai, Lina Song, Bing Quan, Jinglei Wan, Guiqi Zhu, Biao Wang, Yi Yang, Zhengjun Zhou, Tao Li, Zhi Dai","doi":"10.1007/s13402-024-01032-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC) remains a significant global health challenge with limited treatment options. Lenvatinib, a tyrosine kinase inhibitor, has shown promise but is often undermined by the development of drug resistance.</p><p><strong>Methods: </strong>Utilizing high-throughput sequencing, we investigated the molecular mechanisms underlying lenvatinib resistance in HCC cells, with a focus on metabolic pathways. Key genes, including GALNT6, were validated through quantitative real-time PCR. The effects of GALNT6 knockdown on lenvatinib sensitivity were examined in vitro and in vivo. O-GalNAc glycosylation was assessed using Vicia Villosa Lectin. Immune cell infiltration and interactions were analyzed in the TCGA-LIHC cohort, with further validation by Western blotting and immunohistochemistry.</p><p><strong>Results: </strong>Our findings indicate that lenvatinib resistance in HCC is driven by the mucin-type O-glycosylation pathway, with GALNT6 playing a critical role. Knockdown of GALNT6 led to reduced O-GalNAc glycosylation, including the modification of LAPTM5, resulting in decreased LAPTM5 activity and autophagy inhibition. Additionally, GALNT6 silencing disrupted the PDGFA-PDGFRB axis, impairing the activation of cancer-associated fibroblasts (CAFs) and reducing their secretion of SPP1, which collectively diminished lenvatinib resistance.</p><p><strong>Conclusions: </strong>GALNT6 is integral to the resistance mechanisms against lenvatinib in HCC by modulating autophagy and CAF activation. Targeting GALNT6 offers a promising strategy to enhance lenvatinib efficacy and improve therapeutic outcomes in HCC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-01032-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hepatocellular carcinoma (HCC) remains a significant global health challenge with limited treatment options. Lenvatinib, a tyrosine kinase inhibitor, has shown promise but is often undermined by the development of drug resistance.
Methods: Utilizing high-throughput sequencing, we investigated the molecular mechanisms underlying lenvatinib resistance in HCC cells, with a focus on metabolic pathways. Key genes, including GALNT6, were validated through quantitative real-time PCR. The effects of GALNT6 knockdown on lenvatinib sensitivity were examined in vitro and in vivo. O-GalNAc glycosylation was assessed using Vicia Villosa Lectin. Immune cell infiltration and interactions were analyzed in the TCGA-LIHC cohort, with further validation by Western blotting and immunohistochemistry.
Results: Our findings indicate that lenvatinib resistance in HCC is driven by the mucin-type O-glycosylation pathway, with GALNT6 playing a critical role. Knockdown of GALNT6 led to reduced O-GalNAc glycosylation, including the modification of LAPTM5, resulting in decreased LAPTM5 activity and autophagy inhibition. Additionally, GALNT6 silencing disrupted the PDGFA-PDGFRB axis, impairing the activation of cancer-associated fibroblasts (CAFs) and reducing their secretion of SPP1, which collectively diminished lenvatinib resistance.
Conclusions: GALNT6 is integral to the resistance mechanisms against lenvatinib in HCC by modulating autophagy and CAF activation. Targeting GALNT6 offers a promising strategy to enhance lenvatinib efficacy and improve therapeutic outcomes in HCC.
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.