Journal of Inequalities and Applications最新文献

筛选
英文 中文
Nonlinear impulsive differential and integral inequalities with nonlocal jump conditions. 具有非局部跳跃条件的非线性脉冲微分和积分不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-13 DOI: 10.1186/s13660-018-1762-3
Zhaowen Zheng, Yingjie Zhang, Jing Shao
{"title":"Nonlinear impulsive differential and integral inequalities with nonlocal jump conditions.","authors":"Zhaowen Zheng,&nbsp;Yingjie Zhang,&nbsp;Jing Shao","doi":"10.1186/s13660-018-1762-3","DOIUrl":"10.1186/s13660-018-1762-3","url":null,"abstract":"<p><p>Some new nonlinear impulsive differential and integral inequalities with nonlocal integral jump conditions are presented in this paper. Using the method of mathematical induction, we obtain a new upper bound estimation of certain differential and integral inequalities; these inequalities have both nonlocal integral jump and weakly singular kernels. Finally, we give two examples of these inequalities in estimating solutions of certain equations with Riemann-Liouville fractional integral conditions.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"170"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1762-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Several sharp inequalities about the first Seiffert mean. 关于第一个Seiffert均值的几个尖锐的不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-16 DOI: 10.1186/s13660-018-1763-2
Boyong Long, Ling Xu, Qihan Wang
{"title":"Several sharp inequalities about the first Seiffert mean.","authors":"Boyong Long,&nbsp;Ling Xu,&nbsp;Qihan Wang","doi":"10.1186/s13660-018-1763-2","DOIUrl":"10.1186/s13660-018-1763-2","url":null,"abstract":"<p><p>In this paper, we deal with the problem of finding the best possible bounds for the first Seiffert mean in terms of the geometric combination of logarithmic and the Neuman-Sándor means, and in terms of the geometric combination of logarithmic and the second Seiffert means.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"174"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1763-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Common fixed point results on an extended b-metric space. 扩展b-度量空间上的公共不动点结果。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-03 DOI: 10.1186/s13660-018-1745-4
Badr Alqahtani, Andreea Fulga, Erdal Karapınar
{"title":"Common fixed point results on an extended b-metric space.","authors":"Badr Alqahtani,&nbsp;Andreea Fulga,&nbsp;Erdal Karapınar","doi":"10.1186/s13660-018-1745-4","DOIUrl":"https://doi.org/10.1186/s13660-018-1745-4","url":null,"abstract":"<p><p>In this paper, we investigate the existence of common fixed points of a certain mapping in the frame of an extended b-metric space. The given results cover a number of well-known fixed point theorems in the literature. We state some examples to illustrate our results.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"158"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1745-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36422934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
On complete convergence and complete moment convergence for weighted sums of ρ -mixing random variables. 关于ρ∗混合随机变量加权和的完全收敛性和完全矩收敛性。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-01 DOI: 10.1186/s13660-018-1710-2
Pingyan Chen, Soo Hak Sung
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">On complete convergence and complete moment convergence for weighted sums of <ns0:math><ns0:msup><ns0:mi>ρ</ns0:mi><ns0:mo>∗</ns0:mo></ns0:msup></ns0:math> -mixing random variables.","authors":"Pingyan Chen, Soo Hak Sung","doi":"10.1186/s13660-018-1710-2","DOIUrl":"10.1186/s13660-018-1710-2","url":null,"abstract":"<p><p>Let <math><mi>r</mi><mo>≥</mo><mn>1</mn></math> , <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mn>2</mn></math> , and <math><mi>α</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math> with <math><mn>1</mn><mo>/</mo><mi>α</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>p</mi></math> . Let <math><mo>{</mo><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math> be an array of constants satisfying <math><msub><mo>sup</mo><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub><msup><mi>n</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msup><mrow><mo>|</mo><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><mo>|</mo></mrow><mi>α</mi></msup><mo><</mo><mi>∞</mi></math> , and let <math><mo>{</mo><msub><mi>X</mi><mi>n</mi></msub><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math> be a sequence of identically distributed <math><msup><mi>ρ</mi><mo>∗</mo></msup></math> -mixing random variables. For each of the three cases <math><mi>α</mi><mo><</mo><mi>r</mi><mi>p</mi></math> , <math><mi>α</mi><mo>=</mo><mi>r</mi><mi>p</mi></math> , and <math><mi>α</mi><mo>></mo><mi>r</mi><mi>p</mi></math> , we provide moment conditions under which <dispformula><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>∞</mi></munderover><msup><mi>n</mi><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></msup><mi>P</mi><mrow><mo>{</mo><munder><mo>max</mo><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi></mrow></munder><mo>|</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><msub><mi>X</mi><mi>k</mi></msub><mo>|</mo><mo>></mo><mi>ε</mi><msup><mi>n</mi><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><mo>}</mo></mrow><mo><</mo><mi>∞</mi><mo>,</mo><mi>∀</mi><mi>ε</mi><mo>></mo><mn>0</mn><mo>.</mo></math></dispformula> We also provide moment conditions under which <dispformula><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>∞</mi></munderover><msup><mi>n</mi><mrow><mi>r</mi><mo>-</mo><mn>2</mn><mo>-</mo><mi>q</mi><mo>/</mo><mi>p</mi></mrow></msup><mi>E</mi><msubsup><mrow><mo>(</mo><munder><mo>max</mo><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi></mrow></munder><mo>|</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><msub><mi>X</mi><mi>k</mi></msub><mo>|</mo><mo>-</mo><mi>ε</mi><msup><mi>n</mi><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><mo>)</mo></mrow><mo>+</mo><mi>q</mi></msubsup><mo><</mo><mi>∞</mi><mo>,</mo><mi>∀</mi><mi>ε</mi><mo>></mo><mn>0</mn><mo>,</mo></math></dispformula> where <math><mi>q</mi><mo>></mo><mn>0</mn></math> . Our results improve and generalize those of Sung (Discrete Dyn","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"121"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36222028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Majorization involving the cyclic moving average. 涉及循环移动平均线的多数化。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-28 DOI: 10.1186/s13660-018-1737-4
Tao Zhang, Huan-Nan Shi, Bo-Yan Xi, Alatancang Chen
{"title":"Majorization involving the cyclic moving average.","authors":"Tao Zhang,&nbsp;Huan-Nan Shi,&nbsp;Bo-Yan Xi,&nbsp;Alatancang Chen","doi":"10.1186/s13660-018-1737-4","DOIUrl":"https://doi.org/10.1186/s13660-018-1737-4","url":null,"abstract":"<p><p>We solve an open problem on some majorization inequalities involving the cyclic moving average.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"152"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1737-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36419160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Estimates for iterated commutators of multilinear square fucntions with Dini-type kernels. 具有迷你型核的多线性平方函数的迭代换向子估计。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-25 DOI: 10.1186/s13660-018-1778-8
Zengyan Si, Qingying Xue
{"title":"Estimates for iterated commutators of multilinear square fucntions with Dini-type kernels.","authors":"Zengyan Si,&nbsp;Qingying Xue","doi":"10.1186/s13660-018-1778-8","DOIUrl":"https://doi.org/10.1186/s13660-018-1778-8","url":null,"abstract":"<p><p>Let <math><msub><mi>T</mi><mrow><mi>Π</mi><mover><mi>b</mi><mo>→</mo></mover></mrow></msub></math> be the commutator generated by a multilinear square function and Lipschitz functions with kernel satisfying Dini-type condition. We show that <math><msub><mi>T</mi><mrow><mi>Π</mi><mover><mi>b</mi><mo>→</mo></mover></mrow></msub></math> is bounded from product Lebesgue spaces into Lebesgue spaces, Lipschitz spaces, and Triebel-Lizorkin spaces.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"188"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1778-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36419177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A generalization and an application of the arithmetic-geometric mean inequality for the Frobenius norm. Frobenius范数的算术-几何平均不等式的推广及应用。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-20 DOI: 10.1186/s13660-018-1732-9
Xuesha Wu
{"title":"A generalization and an application of the arithmetic-geometric mean inequality for the Frobenius norm.","authors":"Xuesha Wu","doi":"10.1186/s13660-018-1732-9","DOIUrl":"https://doi.org/10.1186/s13660-018-1732-9","url":null,"abstract":"<p><p>Recently, Kittaneh and Manasrah (J. Math. Anal. Appl. 361:262-269, 2010) showed a refinement of the arithmetic-geometric mean inequality for the Frobenius norm. In this paper, we shall present a generalization of Kittaneh and Manasrah's result. Meanwhile, we will also give an application of Kittaneh and Manasrah's result. That is, we obtain an improvement of Jocić and Kittaneh's inequality which was presented in (Jocić and Kittaneh in J. Oper. Theory 31:3-10, 1994).</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"142"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1732-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives. 合形导数内混合非线性强迫微分方程的lyapunov型不等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-20 DOI: 10.1186/s13660-018-1731-x
Thabet Abdeljawad, Ravi P Agarwal, Jehad Alzabut, Fahd Jarad, Abdullah Özbekler
{"title":"Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives.","authors":"Thabet Abdeljawad,&nbsp;Ravi P Agarwal,&nbsp;Jehad Alzabut,&nbsp;Fahd Jarad,&nbsp;Abdullah Özbekler","doi":"10.1186/s13660-018-1731-x","DOIUrl":"https://doi.org/10.1186/s13660-018-1731-x","url":null,"abstract":"<p><p>We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order <math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math> with mixed non-linearities of the form <dispformula><math><mrow><mo>(</mo><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup><mi>x</mi><mo>)</mo></mrow><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><msub><mi>r</mi><mn>1</mn></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mo>|</mo><mrow><mi>η</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><msub><mi>r</mi><mn>2</mn></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mo>|</mo><mrow><mi>δ</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>,</mo></math></dispformula> satisfying the Dirichlet boundary conditions <math><mi>x</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>(</mo><mi>b</mi><mo>)</mo><mo>=</mo><mn>0</mn></math> , where <math><msub><mi>r</mi><mn>1</mn></msub></math> , <math><msub><mi>r</mi><mn>2</mn></msub></math> , and <i>g</i> are real-valued integrable functions, and the non-linearities satisfy the conditions <math><mn>0</mn><mo><</mo><mi>η</mi><mo><</mo><mn>1</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>2</mn></math> . Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative <math><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup></math> is replaced by a sequential conformable derivative <math><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup><mo>∘</mo><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup></math> , <math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>]</mo></math> . The potential functions <math><msub><mi>r</mi><mn>1</mn></msub></math> , <math><msub><mi>r</mi><mn>2</mn></msub></math> as well as the forcing term <i>g</i> require no sign restrictions. The obtained inequalities generalize some existing results in the literature.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"143"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1731-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
Identities between harmonic, hyperharmonic and Daehee numbers. 谐波数、超谐波数和Daehee数之间的恒等式。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-07-11 DOI: 10.1186/s13660-018-1757-0
Seog-Hoon Rim, Taekyun Kim, Sung-Soo Pyo
{"title":"Identities between harmonic, hyperharmonic and Daehee numbers.","authors":"Seog-Hoon Rim,&nbsp;Taekyun Kim,&nbsp;Sung-Soo Pyo","doi":"10.1186/s13660-018-1757-0","DOIUrl":"https://doi.org/10.1186/s13660-018-1757-0","url":null,"abstract":"<p><p>In this paper, we present some identities relating the hyperharmonic, the Daehee and the derangement numbers, and we derive some nonlinear differential equations from the generating function of a hyperharmonic number. In addition, we use this differential equation to obtain some identities in which the hyperharmonic numbers and the Daehee numbers are involved.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"168"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1757-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36421818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
A class of derivative-free trust-region methods with interior backtracking technique for nonlinear optimization problems subject to linear inequality constraints. 一类具有内回溯技术的无导数信赖域方法用于求解线性不等式约束下的非线性优化问题。
IF 1.6 3区 数学
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-05-09 DOI: 10.1186/s13660-018-1698-7
Jing Gao, Jian Cao
{"title":"A class of derivative-free trust-region methods with interior backtracking technique for nonlinear optimization problems subject to linear inequality constraints.","authors":"Jing Gao,&nbsp;Jian Cao","doi":"10.1186/s13660-018-1698-7","DOIUrl":"https://doi.org/10.1186/s13660-018-1698-7","url":null,"abstract":"<p><p>This paper focuses on a class of nonlinear optimization subject to linear inequality constraints with unavailable-derivative objective functions. We propose a derivative-free trust-region methods with interior backtracking technique for this optimization. The proposed algorithm has four properties. Firstly, the derivative-free strategy is applied to reduce the algorithm's requirement for first- or second-order derivatives information. Secondly, an interior backtracking technique ensures not only to reduce the number of iterations for solving trust-region subproblem but also the global convergence to standard stationary points. Thirdly, the local convergence rate is analyzed under some reasonable assumptions. Finally, numerical experiments demonstrate that the new algorithm is effective.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"108"},"PeriodicalIF":1.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1698-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36106422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信