Thabet Abdeljawad, Ravi P Agarwal, Jehad Alzabut, Fahd Jarad, Abdullah Özbekler
{"title":"Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives.","authors":"Thabet Abdeljawad, Ravi P Agarwal, Jehad Alzabut, Fahd Jarad, Abdullah Özbekler","doi":"10.1186/s13660-018-1731-x","DOIUrl":null,"url":null,"abstract":"<p><p>We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order <math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math> with mixed non-linearities of the form <dispformula><math><mrow><mo>(</mo><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup><mi>x</mi><mo>)</mo></mrow><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><msub><mi>r</mi><mn>1</mn></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mo>|</mo><mrow><mi>η</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><msub><mi>r</mi><mn>2</mn></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mo>|</mo><mrow><mi>δ</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>,</mo></math></dispformula> satisfying the Dirichlet boundary conditions <math><mi>x</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>(</mo><mi>b</mi><mo>)</mo><mo>=</mo><mn>0</mn></math> , where <math><msub><mi>r</mi><mn>1</mn></msub></math> , <math><msub><mi>r</mi><mn>2</mn></msub></math> , and <i>g</i> are real-valued integrable functions, and the non-linearities satisfy the conditions <math><mn>0</mn><mo><</mo><mi>η</mi><mo><</mo><mn>1</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>2</mn></math> . Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative <math><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup></math> is replaced by a sequential conformable derivative <math><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup><mo>∘</mo><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup></math> , <math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>]</mo></math> . The potential functions <math><msub><mi>r</mi><mn>1</mn></msub></math> , <math><msub><mi>r</mi><mn>2</mn></msub></math> as well as the forcing term <i>g</i> require no sign restrictions. The obtained inequalities generalize some existing results in the literature.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"143"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1731-x","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1731-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 35
Abstract
We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order with mixed non-linearities of the form satisfying the Dirichlet boundary conditions , where , , and g are real-valued integrable functions, and the non-linearities satisfy the conditions . Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative is replaced by a sequential conformable derivative , . The potential functions , as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.