Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives.

IF 1.6 3区 数学 Q1 Mathematics
Journal of Inequalities and Applications Pub Date : 2018-01-01 Epub Date: 2018-06-20 DOI:10.1186/s13660-018-1731-x
Thabet Abdeljawad, Ravi P Agarwal, Jehad Alzabut, Fahd Jarad, Abdullah Özbekler
{"title":"Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives.","authors":"Thabet Abdeljawad,&nbsp;Ravi P Agarwal,&nbsp;Jehad Alzabut,&nbsp;Fahd Jarad,&nbsp;Abdullah Özbekler","doi":"10.1186/s13660-018-1731-x","DOIUrl":null,"url":null,"abstract":"<p><p>We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order <math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math> with mixed non-linearities of the form <dispformula><math><mrow><mo>(</mo><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup><mi>x</mi><mo>)</mo></mrow><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><msub><mi>r</mi><mn>1</mn></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mo>|</mo><mrow><mi>η</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>+</mo><msub><mi>r</mi><mn>2</mn></msub><mo>(</mo><mi>t</mi><mo>)</mo><mo>|</mo><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><msup><mo>|</mo><mrow><mi>δ</mi><mo>-</mo><mn>1</mn></mrow></msup><mi>x</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>g</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo><mo>,</mo></math></dispformula> satisfying the Dirichlet boundary conditions <math><mi>x</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mi>x</mi><mo>(</mo><mi>b</mi><mo>)</mo><mo>=</mo><mn>0</mn></math> , where <math><msub><mi>r</mi><mn>1</mn></msub></math> , <math><msub><mi>r</mi><mn>2</mn></msub></math> , and <i>g</i> are real-valued integrable functions, and the non-linearities satisfy the conditions <math><mn>0</mn><mo><</mo><mi>η</mi><mo><</mo><mn>1</mn><mo><</mo><mi>δ</mi><mo><</mo><mn>2</mn></math> . Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative <math><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup></math> is replaced by a sequential conformable derivative <math><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup><mo>∘</mo><msubsup><mi>T</mi><mi>α</mi><mi>a</mi></msubsup></math> , <math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>]</mo></math> . The potential functions <math><msub><mi>r</mi><mn>1</mn></msub></math> , <math><msub><mi>r</mi><mn>2</mn></msub></math> as well as the forcing term <i>g</i> require no sign restrictions. The obtained inequalities generalize some existing results in the literature.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"143"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1731-x","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1731-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 35

Abstract

We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order α(1,2] with mixed non-linearities of the form (Tαax)(t)+r1(t)|x(t)|η-1x(t)+r2(t)|x(t)|δ-1x(t)=g(t),t(a,b), satisfying the Dirichlet boundary conditions x(a)=x(b)=0 , where r1 , r2 , and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0<η<1<δ<2 . Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative Tαa is replaced by a sequential conformable derivative TαaTαa , α(1/2,1] . The potential functions r1 , r2 as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.

合形导数内混合非线性强迫微分方程的lyapunov型不等式。
对于一类阶α∈(1,2)具有混合非线性形式(t α αax)(t)+r1(t)|x(t)|η-1x(t)+r2(t)|x(t)|δ-1x(t)=g(t),t∈(a,b),满足Dirichlet边界条件x(a)=x(b)=0,其中r1、r2、g为实值可积函数,且非线性满足条件0η1δ2的可合边值问题,给出并证明了新的广义lyapunov型和hartman型不等式。此外,当适形导数Tαa被一个连续的适形导数Tαa替代时,得到lyapunov型不等式和hartman型不等式。势函数r1 r2和强迫项g不需要符号限制。所得不等式推广了文献中已有的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inequalities and Applications
Journal of Inequalities and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.30
自引率
6.20%
发文量
136
审稿时长
3 months
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信