{"title":"关于ρ∗混合随机变量加权和的完全收敛性和完全矩收敛性。","authors":"Pingyan Chen, Soo Hak Sung","doi":"10.1186/s13660-018-1710-2","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mi>r</mi><mo>≥</mo><mn>1</mn></math> , <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mn>2</mn></math> , and <math><mi>α</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math> with <math><mn>1</mn><mo>/</mo><mi>α</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>p</mi></math> . Let <math><mo>{</mo><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math> be an array of constants satisfying <math><msub><mo>sup</mo><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub><msup><mi>n</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msup><mrow><mo>|</mo><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><mo>|</mo></mrow><mi>α</mi></msup><mo><</mo><mi>∞</mi></math> , and let <math><mo>{</mo><msub><mi>X</mi><mi>n</mi></msub><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math> be a sequence of identically distributed <math><msup><mi>ρ</mi><mo>∗</mo></msup></math> -mixing random variables. For each of the three cases <math><mi>α</mi><mo><</mo><mi>r</mi><mi>p</mi></math> , <math><mi>α</mi><mo>=</mo><mi>r</mi><mi>p</mi></math> , and <math><mi>α</mi><mo>></mo><mi>r</mi><mi>p</mi></math> , we provide moment conditions under which <dispformula><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>∞</mi></munderover><msup><mi>n</mi><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></msup><mi>P</mi><mrow><mo>{</mo><munder><mo>max</mo><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi></mrow></munder><mo>|</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><msub><mi>X</mi><mi>k</mi></msub><mo>|</mo><mo>></mo><mi>ε</mi><msup><mi>n</mi><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><mo>}</mo></mrow><mo><</mo><mi>∞</mi><mo>,</mo><mi>∀</mi><mi>ε</mi><mo>></mo><mn>0</mn><mo>.</mo></math></dispformula> We also provide moment conditions under which <dispformula><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>∞</mi></munderover><msup><mi>n</mi><mrow><mi>r</mi><mo>-</mo><mn>2</mn><mo>-</mo><mi>q</mi><mo>/</mo><mi>p</mi></mrow></msup><mi>E</mi><msubsup><mrow><mo>(</mo><munder><mo>max</mo><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi></mrow></munder><mo>|</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><msub><mi>X</mi><mi>k</mi></msub><mo>|</mo><mo>-</mo><mi>ε</mi><msup><mi>n</mi><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><mo>)</mo></mrow><mo>+</mo><mi>q</mi></msubsup><mo><</mo><mi>∞</mi><mo>,</mo><mi>∀</mi><mi>ε</mi><mo>></mo><mn>0</mn><mo>,</mo></math></dispformula> where <math><mi>q</mi><mo>></mo><mn>0</mn></math> . Our results improve and generalize those of Sung (Discrete Dyn. Nat. Soc. 2010:630608, 2010) and Wu et al. (Stat. Probab. Lett. 127:55-66, 2017).</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"121"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982509/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">On complete convergence and complete moment convergence for weighted sums of <ns0:math><ns0:msup><ns0:mi>ρ</ns0:mi><ns0:mo>∗</ns0:mo></ns0:msup></ns0:math> -mixing random variables.\",\"authors\":\"Pingyan Chen, Soo Hak Sung\",\"doi\":\"10.1186/s13660-018-1710-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Let <math><mi>r</mi><mo>≥</mo><mn>1</mn></math> , <math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mn>2</mn></math> , and <math><mi>α</mi><mo>,</mo><mi>β</mi><mo>></mo><mn>0</mn></math> with <math><mn>1</mn><mo>/</mo><mi>α</mi><mo>+</mo><mn>1</mn><mo>/</mo><mi>β</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>p</mi></math> . Let <math><mo>{</mo><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><mo>,</mo><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math> be an array of constants satisfying <math><msub><mo>sup</mo><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></msub><msup><mi>n</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msubsup><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msup><mrow><mo>|</mo><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><mo>|</mo></mrow><mi>α</mi></msup><mo><</mo><mi>∞</mi></math> , and let <math><mo>{</mo><msub><mi>X</mi><mi>n</mi></msub><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>}</mo></math> be a sequence of identically distributed <math><msup><mi>ρ</mi><mo>∗</mo></msup></math> -mixing random variables. For each of the three cases <math><mi>α</mi><mo><</mo><mi>r</mi><mi>p</mi></math> , <math><mi>α</mi><mo>=</mo><mi>r</mi><mi>p</mi></math> , and <math><mi>α</mi><mo>></mo><mi>r</mi><mi>p</mi></math> , we provide moment conditions under which <dispformula><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>∞</mi></munderover><msup><mi>n</mi><mrow><mi>r</mi><mo>-</mo><mn>2</mn></mrow></msup><mi>P</mi><mrow><mo>{</mo><munder><mo>max</mo><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi></mrow></munder><mo>|</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><msub><mi>X</mi><mi>k</mi></msub><mo>|</mo><mo>></mo><mi>ε</mi><msup><mi>n</mi><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><mo>}</mo></mrow><mo><</mo><mi>∞</mi><mo>,</mo><mi>∀</mi><mi>ε</mi><mo>></mo><mn>0</mn><mo>.</mo></math></dispformula> We also provide moment conditions under which <dispformula><math><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>∞</mi></munderover><msup><mi>n</mi><mrow><mi>r</mi><mo>-</mo><mn>2</mn><mo>-</mo><mi>q</mi><mo>/</mo><mi>p</mi></mrow></msup><mi>E</mi><msubsup><mrow><mo>(</mo><munder><mo>max</mo><mrow><mn>1</mn><mo>≤</mo><mi>m</mi><mo>≤</mo><mi>n</mi></mrow></munder><mo>|</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>m</mi></munderover><msub><mi>a</mi><mrow><mi>n</mi><mi>k</mi></mrow></msub><msub><mi>X</mi><mi>k</mi></msub><mo>|</mo><mo>-</mo><mi>ε</mi><msup><mi>n</mi><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><mo>)</mo></mrow><mo>+</mo><mi>q</mi></msubsup><mo><</mo><mi>∞</mi><mo>,</mo><mi>∀</mi><mi>ε</mi><mo>></mo><mn>0</mn><mo>,</mo></math></dispformula> where <math><mi>q</mi><mo>></mo><mn>0</mn></math> . Our results improve and generalize those of Sung (Discrete Dyn. Nat. Soc. 2010:630608, 2010) and Wu et al. (Stat. Probab. Lett. 127:55-66, 2017).</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"2018 1\",\"pages\":\"121\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1710-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/6/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1710-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/6/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
On complete convergence and complete moment convergence for weighted sums of ρ∗ -mixing random variables.
Let , , and with . Let be an array of constants satisfying , and let be a sequence of identically distributed -mixing random variables. For each of the three cases , , and , we provide moment conditions under which We also provide moment conditions under which where . Our results improve and generalize those of Sung (Discrete Dyn. Nat. Soc. 2010:630608, 2010) and Wu et al. (Stat. Probab. Lett. 127:55-66, 2017).
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.