Kyoto Journal of Mathematics最新文献

筛选
英文 中文
A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields 关于正特征域上阿贝尔变种的Fourier–Mukai伙伴的一个注记
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2021-07-12 DOI: 10.1215/21562261-2023-0008
Zhiyuan Li, Haitao Zou
{"title":"A note on Fourier–Mukai partners of abelian varieties over positive characteristic fields","authors":"Zhiyuan Li, Haitao Zou","doi":"10.1215/21562261-2023-0008","DOIUrl":"https://doi.org/10.1215/21562261-2023-0008","url":null,"abstract":"Over complex numbers, the Fourier-Mukai partners of abelian varieties are well-understood. A celebrated result is Orlov's derived Torelli theorem. In this note, we study the FM-partners of abelian varieties in positive characteristic. We notice that, in odd characteristics, two abelian varieties of odd dimension are derived equivalent if their associated Kummer stacks are derived equivalent, which is Krug and Sosna's result over complex numbers. For abelian surfaces in odd characteristic, we show that two abelian surfaces are derived equivalent if and only if their associated Kummer surfaces are isomorphic. This extends the result [doi:10.1215/s0012-7094-03-12036-0] to odd characteristic fields, which solved a classical problem originally from Shioda. Furthermore, we establish the derived Torelli theorem for supersingular abelian varieties and apply it to characterize the quasi-liftable birational models of supersingular generalized Kummer varieties.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41292362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Kenji Fukaya Fukaya Kenji
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2021-06-01 DOI: 10.1215/21562261-2021-0014
K. Fujiwara, K. Ôno
{"title":"Kenji Fukaya","authors":"K. Fujiwara, K. Ôno","doi":"10.1215/21562261-2021-0014","DOIUrl":"https://doi.org/10.1215/21562261-2021-0014","url":null,"abstract":"","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45123182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On higher Fitting ideals of certain Iwasawa modules associated with Galois representations and Euler systems 论与伽罗瓦表示和欧拉系统相关的某些Iwasawa模的较高拟合理想
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2021-03-01 DOI: 10.1215/21562261-2020-0004
T. Ohshita
{"title":"On higher Fitting ideals of certain Iwasawa modules associated with Galois representations and Euler systems","authors":"T. Ohshita","doi":"10.1215/21562261-2020-0004","DOIUrl":"https://doi.org/10.1215/21562261-2020-0004","url":null,"abstract":"By using “Gauss sum type” Kolyvagin systems, Kurihara studied the higher Fitting ideals of Iwasawa modules, and he obtained a refinement of the minus part of the Iwasawa main conjecture over totally real fields ([Ku]). In this paper, we study the higher Fitting ideals of Iwasawa modules arising from the dual fine Selmer groups of general Galois representations which have Euler systems of “Rubintype”, like circular units or Beilinson–Kato elements. By using Kolyvagin derivatives, we construct an ascending filtration {Ci(c)}i≥0 of the Iwasawa algebra, and show that the filtration {Ci(c)}i≥0 gives good approximation of the higher Fitting ideals of the Iwasawa module under the assumption of “Iwasawa main conjecture”. Our results can be regarded as analogues of Kurihara’s results, and a refinement of “Iwasawa main conjecture” and Mazur–Rubin theory in certain cases.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49023519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Smooth Kuranishi structure of the space of Morse trajectories 摩尔斯轨迹空间的光滑Kuranishi结构
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2021-01-01 DOI: 10.1215/21562261-2021-0001
Suguru Ishikawa
{"title":"Smooth Kuranishi structure of the space of Morse trajectories","authors":"Suguru Ishikawa","doi":"10.1215/21562261-2021-0001","DOIUrl":"https://doi.org/10.1215/21562261-2021-0001","url":null,"abstract":"Our aim here is to explain a new technique for the construction of a smooth Kuranishi structure, which we used in our previous article about the construction of symplectic field theory. We explain this technique in the case of a Morse chain complex.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66025478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remarks about the C∞-closing lemma for 3-dimensional Reeb flows 三维Reeb流C∞闭引理的注释
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2021-01-01 DOI: 10.1215/21562261-2021-0003
Kei Irie
{"title":"Remarks about the C∞-closing lemma for 3-dimensional Reeb flows","authors":"Kei Irie","doi":"10.1215/21562261-2021-0003","DOIUrl":"https://doi.org/10.1215/21562261-2021-0003","url":null,"abstract":"We prove two refinements of theC∞-closing lemma for 3-dimensional Reeb flows, which was proved by the author as an application of spectral invariants ofEmbedded Contact Homology (ECH). Specifically, we prove the following two results: (i) for aC∞-generic contact form on any closed 3-manifold, the union of periodic Reeb orbits representing ECH homology classes is dense; (ii) a certain real-analytic version of the C∞-closing lemma for 3-dimensional Reeb flows. A few questions and conjectures related to these results are also discussed.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66025490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Divergence function of the braided Thompson group 编织汤普森群的散度函数
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2020-12-07 DOI: 10.1215/21562261-10428532
Y. Kodama
{"title":"Divergence function of the braided Thompson group","authors":"Y. Kodama","doi":"10.1215/21562261-10428532","DOIUrl":"https://doi.org/10.1215/21562261-10428532","url":null,"abstract":"We prove that the braided Thompson group $BV$ has a linear divergence function. By the work of Druţu, Mozes, and Sapir, this leads none of asymptotic cones of $BV$ has a cut-point.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46657278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The conversion formulas between π∗BP and H∗BP π * BP与H * BP之间的转换公式
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2020-12-01 DOI: 10.1215/21562261-2019-0057
Koichi Inoue
{"title":"The conversion formulas between π∗BP and H∗BP","authors":"Koichi Inoue","doi":"10.1215/21562261-2019-0057","DOIUrl":"https://doi.org/10.1215/21562261-2019-0057","url":null,"abstract":"","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45466812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genus 2 Lefschetz fibrations with b 2 + = 1 and c 1 2 = 1 , 2 b 2 + = 1和c 1 2 = 1,2的2属Lefschetz纤颤
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2020-12-01 DOI: 10.1215/21562261-2019-0067
Anar Akhmedov, Naoyuki Monden
{"title":"Genus 2 Lefschetz fibrations with b 2 + = 1 and c 1 2 = 1 , 2","authors":"Anar Akhmedov, Naoyuki Monden","doi":"10.1215/21562261-2019-0067","DOIUrl":"https://doi.org/10.1215/21562261-2019-0067","url":null,"abstract":"","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44853305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the nonrelativistic limit of a semilinear field equation in a homogeneous and isotropic space 齐次各向同性空间中半线性场方程的非相对论性极限
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2020-12-01 DOI: 10.1215/21562261-2019-0063
Makoto Nakamura
{"title":"On the nonrelativistic limit of a semilinear field equation in a homogeneous and isotropic space","authors":"Makoto Nakamura","doi":"10.1215/21562261-2019-0063","DOIUrl":"https://doi.org/10.1215/21562261-2019-0063","url":null,"abstract":"","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43875057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the stochastic nonlinear Schrödinger equations with nonsmooth additive noise 具有非光滑加性噪声的随机非线性Schrödinger方程
IF 0.6 4区 数学
Kyoto Journal of Mathematics Pub Date : 2020-12-01 DOI: 10.1215/21562261-2019-0060
Tadahiro Oh, Oana Pocovnicu, Yuzhao Wang
{"title":"On the stochastic nonlinear Schrödinger equations with nonsmooth additive noise","authors":"Tadahiro Oh, Oana Pocovnicu, Yuzhao Wang","doi":"10.1215/21562261-2019-0060","DOIUrl":"https://doi.org/10.1215/21562261-2019-0060","url":null,"abstract":"","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46068887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信