{"title":"双曲面的收缩和直径","authors":"F. Balacheff, V. Despr'e, H. Parlier","doi":"10.1215/21562261-2022-0040","DOIUrl":null,"url":null,"abstract":"In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus dependent) upper bound.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Systoles and diameters of hyperbolic surfaces\",\"authors\":\"F. Balacheff, V. Despr'e, H. Parlier\",\"doi\":\"10.1215/21562261-2022-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus dependent) upper bound.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2022-0040\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0040","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus dependent) upper bound.
期刊介绍:
The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.