{"title":"编织汤普森群的散度函数","authors":"Y. Kodama","doi":"10.1215/21562261-10428532","DOIUrl":null,"url":null,"abstract":"We prove that the braided Thompson group $BV$ has a linear divergence function. By the work of Druţu, Mozes, and Sapir, this leads none of asymptotic cones of $BV$ has a cut-point.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Divergence function of the braided Thompson group\",\"authors\":\"Y. Kodama\",\"doi\":\"10.1215/21562261-10428532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the braided Thompson group $BV$ has a linear divergence function. By the work of Druţu, Mozes, and Sapir, this leads none of asymptotic cones of $BV$ has a cut-point.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-10428532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-10428532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that the braided Thompson group $BV$ has a linear divergence function. By the work of Druţu, Mozes, and Sapir, this leads none of asymptotic cones of $BV$ has a cut-point.