半线性波动方程系统能量的不衰减

IF 0.5 4区 数学 Q3 MATHEMATICS
Y. Nishii
{"title":"半线性波动方程系统能量的不衰减","authors":"Y. Nishii","doi":"10.1215/21562261-10428437","DOIUrl":null,"url":null,"abstract":"We consider the global Cauchy problem for a two-component system of cubic semilinear wave equations in two space dimensions. We give a criterion for large time non-decay of the energy for small amplitude solutions in terms of the radiation fields associated with the initial data.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nondecay of the energy for a system of semilinear wave equations\",\"authors\":\"Y. Nishii\",\"doi\":\"10.1215/21562261-10428437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the global Cauchy problem for a two-component system of cubic semilinear wave equations in two space dimensions. We give a criterion for large time non-decay of the energy for small amplitude solutions in terms of the radiation fields associated with the initial data.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-10428437\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-10428437","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑两个空间维度上三次半线性波动方程组的全局Cauchy问题。根据和初始数据相关的辐射场,我们给出了小振幅解的大时间能量不衰减的判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondecay of the energy for a system of semilinear wave equations
We consider the global Cauchy problem for a two-component system of cubic semilinear wave equations in two space dimensions. We give a criterion for large time non-decay of the energy for small amplitude solutions in terms of the radiation fields associated with the initial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信