{"title":"半线性波动方程系统能量的不衰减","authors":"Y. Nishii","doi":"10.1215/21562261-10428437","DOIUrl":null,"url":null,"abstract":"We consider the global Cauchy problem for a two-component system of cubic semilinear wave equations in two space dimensions. We give a criterion for large time non-decay of the energy for small amplitude solutions in terms of the radiation fields associated with the initial data.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nondecay of the energy for a system of semilinear wave equations\",\"authors\":\"Y. Nishii\",\"doi\":\"10.1215/21562261-10428437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the global Cauchy problem for a two-component system of cubic semilinear wave equations in two space dimensions. We give a criterion for large time non-decay of the energy for small amplitude solutions in terms of the radiation fields associated with the initial data.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-10428437\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-10428437","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nondecay of the energy for a system of semilinear wave equations
We consider the global Cauchy problem for a two-component system of cubic semilinear wave equations in two space dimensions. We give a criterion for large time non-decay of the energy for small amplitude solutions in terms of the radiation fields associated with the initial data.
期刊介绍:
The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.