{"title":"The secret lives of single cells","authors":"Thomas K. Wood","doi":"10.1111/1751-7915.13806","DOIUrl":"https://doi.org/10.1111/1751-7915.13806","url":null,"abstract":"<p>Looking back fondly on the first 15 years of <i>Microbial Biotechnology</i>, a trend is emerging that biotechnology is moving from studies that focus on whole-cell populations, where heterogeneity exists even during robust growth, to those with an emphasis on single cells. This instils optimism that insights will be made into myriad aspects of bacterial growth in communities.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 1","pages":"13-17"},"PeriodicalIF":5.7,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13806","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5837304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Young-Tae Park, Taejung Kim, Jungyeob Ham, Jaeyoung Choi, Hoe-Suk Lee, Young Joo Yeon, Soo In Choi, Nayoung Kim, Yeon-Ran Kim, Yeong-Jae Seok
{"title":"Physiological activity of E. coli engineered to produce butyric acid","authors":"Young-Tae Park, Taejung Kim, Jungyeob Ham, Jaeyoung Choi, Hoe-Suk Lee, Young Joo Yeon, Soo In Choi, Nayoung Kim, Yeon-Ran Kim, Yeong-Jae Seok","doi":"10.1111/1751-7915.13795","DOIUrl":"https://doi.org/10.1111/1751-7915.13795","url":null,"abstract":"<p><i>Faecalibacterium prausnitzii</i> (<i>F</i>. <i>prausnitzii</i>) is one of the most abundant bacteria in the human intestine, with its anti-inflammatory effects establishing it as a major effector in human intestinal health. However, its extreme sensitivity to oxygen makes its cultivation and physiological study difficult. <i>F</i>. <i>prausnitzii</i> produces butyric acid, which is beneficial to human gut health. Butyric acid is a short-chain fatty acid (SCFA) produced by the fermentation of carbohydrates, such as dietary fibre in the large bowel. The genes encoding butyryl-CoA dehydrogenase (BCD) and butyryl-CoA:acetate CoA transferase (BUT) in <i>F</i>. <i>prausnitzii</i> were cloned and expressed in <i>E. coli</i> to determine the effect of butyric acid production on intestinal health using DSS-induced colitis model mice. The results from the <i>E. coli</i> Nissle 1917 strain, expressing BCD, BUT, or both, showed that BCD was essential, while BUT was dispensable for producing butyric acid. The effects of different carbon sources, such as glucose, <i>N</i>-acetylglucosamine (NAG), <i>N</i>-acetylgalactosamine (NAGA), and inulin, were compared with results showing that the optimal carbon sources for butyric acid production were NAG, a major component of mucin in the human intestine, and glucose. Furthermore, the anti-inflammatory effects of butyric acid production were tested by administering these strains to DSS-induced colitis model mice. The oral administration of the <i>E. coli</i> Nissle 1917 strain, carrying the expression vector for BCD and BUT (EcN-BCD-BUT), was found to prevent DSS-induced damage. Introduction of the BCD expression vector into <i>E. coli</i> Nissle 1917 led to increased butyric acid production, which improved the strain’s health-beneficial effects.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 3","pages":"832-843"},"PeriodicalIF":5.7,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13795","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5676428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard L. Kimber, Fabio Parmeggiani, Thomas S. Neill, Mohamed L. Merroun, Gregory Goodlet, Nigel A. Powell, Nicholas J. Turner, Jonathan R. Lloyd
{"title":"Biotechnological synthesis of Pd/Ag and Pd/Au nanoparticles for enhanced Suzuki–Miyaura cross-coupling activity","authors":"Richard L. Kimber, Fabio Parmeggiani, Thomas S. Neill, Mohamed L. Merroun, Gregory Goodlet, Nigel A. Powell, Nicholas J. Turner, Jonathan R. Lloyd","doi":"10.1111/1751-7915.13762","DOIUrl":"https://doi.org/10.1111/1751-7915.13762","url":null,"abstract":"<p>Bimetallic nanoparticle catalysts have attracted considerable attention due to their unique chemical and physical properties. The ability of metal-reducing bacteria to produce highly catalytically active monometallic nanoparticles is well known; however, the properties and catalytic activity of bimetallic nanoparticles synthesized with these organisms is not well understood. Here, we report the one-pot biosynthesis of Pd/Ag (bio-Pd/Ag) and Pd/Au (bio-Pd/Au) nanoparticles using the metal-reducing bacterium, <i>Shewanella oneidensis</i>, under mild conditions. Energy dispersive X-ray analyses performed using scanning transmission electron microscopy (STEM) revealed the presence of both metals (Pd/Ag or Pd/Au) in the biosynthesized nanoparticles. X-ray absorption near-edge spectroscopy (XANES) suggested a significant contribution from Pd(0) and Pd(II) in both bio-Pd/Ag and bio-Pd/Au, with Ag and Au existing predominately as their metallic forms. Extended X-ray absorption fine-structure spectroscopy (EXAFS) supported the presence of multiple Pd species in bio-Pd/Ag and bio-Pd/Au, as inferred from Pd–Pd, Pd–O and Pd–S shells. Both bio-Pd/Ag and bio-Pd/Au demonstrated greatly enhanced catalytic activity towards Suzuki–Miyaura cross-coupling compared to a monometallic Pd catalyst, with bio-Pd/Ag significantly outperforming the others. The catalysts were very versatile, tolerating a wide range of substituents. This work demonstrates a green synthesis method for novel bimetallic nanoparticles that display significantly enhanced catalytic activity compared to their monometallic counterparts.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 6","pages":"2435-2447"},"PeriodicalIF":5.7,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13762","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5865927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ferran Balaguer, María Enrique, Silvia Llopis, Marta Barrena, Verónica Navarro, Beatriz álvarez, Empar Chenoll, Daniel Ramón, Marta Tortajada, Patricia Martorell
{"title":"Lipoteichoic acid from Bifidobacterium animalis subsp. lactis BPL1: a novel postbiotic that reduces fat deposition via IGF-1 pathway","authors":"Ferran Balaguer, María Enrique, Silvia Llopis, Marta Barrena, Verónica Navarro, Beatriz álvarez, Empar Chenoll, Daniel Ramón, Marta Tortajada, Patricia Martorell","doi":"10.1111/1751-7915.13769","DOIUrl":"https://doi.org/10.1111/1751-7915.13769","url":null,"abstract":"<p>Obesity and its related metabolic disorders, such as diabetes and cardiovascular disease, are major risk factors for morbidity and mortality in the world population. In this context, supplementation with the probiotic strain <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> BPL1 (CECT8145) has been shown to ameliorate obesity biomarkers. Analyzing the basis of this observation and using the pre-clinical model <i>Caenorhabditis elegans,</i> we have found that lipoteichoic acid (LTA) of BPL1 is responsible for its fat-reducing properties and that this attribute is preserved under hyperglycaemic conditions. This fat-reducing capacity of both BPL1 and LTA-BPL1 is abolished under glucose restriction, as a result of changes in LTA chemical composition. Moreover, we have demonstrated that LTA exerts this function through the IGF-1 pathway, as does BPL1 strain. These results open the possibility of using LTA as a novel postbiotic, whose beneficial properties can be applied therapeutically and/or preventively in metabolic syndrome and diabetes-related disorders.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 3","pages":"805-816"},"PeriodicalIF":5.7,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13769","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5997852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongle Li, Aoqiang Li, Joseph R. Hoyt, Wentao Dai, Haixia Leng, Yanfei Li, Wei Li, Sen Liu, Longru Jin, Keping Sun, Jiang Feng
{"title":"Activity of bacteria isolated from bats against Pseudogymnoascus destructans in China","authors":"Zhongle Li, Aoqiang Li, Joseph R. Hoyt, Wentao Dai, Haixia Leng, Yanfei Li, Wei Li, Sen Liu, Longru Jin, Keping Sun, Jiang Feng","doi":"10.1111/1751-7915.13765","DOIUrl":"https://doi.org/10.1111/1751-7915.13765","url":null,"abstract":"<p>White-nose syndrome, a disease that is caused by the psychrophilic fungus <i>Pseudogymnoascus destructans</i>, has threatened several North America bat species with extinction. Recent studies have shown that East Asian bats are infected with <i>P. destructans</i> but show greatly reduced infections. While several factors have been found to contribute to these reduced infections, the role of specific microbes in limiting <i>P. destructans</i> growth remains unexplored. We isolated three bacterial strains with the ability to inhibit <i>P. destructans</i>, namely, <i>Pseudomonas yamanorum</i> GZD14026, <i>Pseudomonas brenneri</i> XRD11711 and <i>Pseudomonas fragi</i> GZD14479, from bats in China. <i>Pseudomonas yamanorum</i>, with the highest inhibition score, was selected to extract antifungal active substance. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy analyses, we identified the active compound inhibiting <i>P. destructans</i> as phenazine-1-carboxylic acid (PCA), and the minimal inhibitory concentration (MIC) was 50.12 μg ml<sup>−1</sup>. Whole genome sequencing also revealed the existence of PCA biosynthesis gene clusters. Gas chromatography-mass spectrometry (GC-MS) analysis identified volatile organic compounds. The results indicated that 10 ppm octanoic acid, 100 ppm 3-tert-butyl-4-hydroxyanisole (isoprenol) and 100 ppm 3-methyl-3-buten-1-ol (BHA) inhibited the growth of <i>P. destructans</i>. These results support that bacteria may play a role in limiting the growth of <i>P. destructans</i> on bats.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 2","pages":"469-481"},"PeriodicalIF":5.7,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13765","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6151874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jo?o Heitor Colombelli Manfr?o-Netto, Fredrik Lund, Nina Muratovska, Elin M. Larsson, Nádia Skorupa Parachin, Magnus Carlquist
{"title":"Metabolic engineering of Pseudomonas putida for production of vanillylamine from lignin-derived substrates","authors":"Jo?o Heitor Colombelli Manfr?o-Netto, Fredrik Lund, Nina Muratovska, Elin M. Larsson, Nádia Skorupa Parachin, Magnus Carlquist","doi":"10.1111/1751-7915.13764","DOIUrl":"https://doi.org/10.1111/1751-7915.13764","url":null,"abstract":"<p>Whole-cell bioconversion of technical lignins using <i>Pseudomonas putida strains</i> overexpressing amine transaminases (ATAs) has the potential to become an eco-efficient route to produce phenolic amines. Here, a novel cell growth-based screening method to evaluate the <i>in vivo</i> activity of recombinant ATAs towards vanillylamine in <i>P. putida</i> KT2440 was developed. It allowed the identification of the native enzyme Pp-SpuC-II and ATA from <i>Chromobacterium violaceum</i> (<i>Cv-ATA</i>) as highly active towards vanillylamine <i>in vivo</i>. Overexpression of <i>Pp-SpuC-II</i> and <i>Cv-ATA</i> in the strain GN442ΔPP_2426, previously engineered for reduced vanillin assimilation, resulted in 94- and 92-fold increased specific transaminase activity, respectively. Whole-cell bioconversion of vanillin yielded 0.70 ± 0.20 mM and 0.92 ± 0.30 mM vanillylamine, for <i>Pp-SpuC-II</i> and <i>Cv-ATA</i>, respectively. Still, amine production was limited by a substantial re-assimilation of the product and formation of the by-products vanillic acid and vanillyl alcohol. Concomitant overexpression of <i>Cv-ATA</i> and alanine dehydrogenase from <i>Bacillus subtilis</i> increased the production of vanillylamine with ammonium as the only nitrogen source and a reduction in the amount of amine product re-assimilation. Identification and deletion of additional native genes encoding oxidoreductases acting on vanillin are crucial engineering targets for further improvement.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 6","pages":"2448-2462"},"PeriodicalIF":5.7,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13764","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6055834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probiotic Lactobacillus casei Shirota prevents acute liver injury by reshaping the gut microbiota to alleviate excessive inflammation and metabolic disorders","authors":"Ren Yan, Kaicen Wang, Qiangqiang Wang, Huiyong Jiang, Yingfeng Lu, Xiaoxiao Chen, Hua Zhang, Xiaoling Su, Yiling Du, Lifeng Chen, Lanjuan Li, Longxian Lv","doi":"10.1111/1751-7915.13750","DOIUrl":"https://doi.org/10.1111/1751-7915.13750","url":null,"abstract":"<p>Millions of people die from liver diseases annually, and liver failure is one of the three major outcomes of liver disease. The gut microbiota plays a crucial role in liver diseases. This study aimed to explore the effects of <i>Lactobacillus casei</i> strain Shirota (LcS), a probiotics used widely around the world, on acute liver injury (ALI), as well as the underlying mechanism. Sprague Dawley rats were intragastrically administered LcS suspensions or placebo once daily for 7 days before induction of ALI by intraperitoneal injection of D-galactosamine (D-GalN). Histopathological examination and assessments of liver biochemical markers, inflammatory cytokines, and the gut microbiota, metabolome and transcriptome were conducted. Our results showed that pretreatment with LcS reduced hepatic and intestinal damage and reduced the elevation of serum gamma-glutamyltranspeptidase (GGT), total bile acids, IL-5, IL-10, G-CSF and RANTES. The analysis of the gut microbiota, metabolome and transcriptome showed that LcS lowered the ratio of Firmicutes to Bacteroidetes; reduced the enrichment of metabolites such as chenodeoxycholic acid, deoxycholic acid, lithocholic acid, <span>d</span>-talose and <i>N</i>-acetyl-glucosamine, reduce the depletion of <span>d</span>-glucose and <span>l</span>-methionine; and alleviated the downregulation of retinol metabolism and PPAR signalling and the upregulation of the pyruvate metabolism pathway in the liver. These results indicate the promising prospect of using LcS for the treatment of liver diseases, particularly ALI.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 1","pages":"247-261"},"PeriodicalIF":5.7,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13750","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5711459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aspergillus fumigatus AR04 obeys Arrhenius' rule in cultivation temperature shifts from 30 to 40°C","authors":"Susanne Nieland, Susann Barig, Julian Salzmann, Frauke Gehrau, Arief Izzairy Zamani, Annabell Richter, Julia Ibrahim, Yvonne Gr?ser, Chyan Leong Ng, Klaus-Peter Stahmann","doi":"10.1111/1751-7915.13739","DOIUrl":"https://doi.org/10.1111/1751-7915.13739","url":null,"abstract":"<p>To set a benchmark in fungal growth rate, a differential analysis of prototrophic <i>Aspergillus fumigatus</i> AR04 with three ascomycetes applied in > 10<sup>3</sup> t year<sup>-1</sup> scale was performed, i.e. <i>Ashbya gosspyii</i> (riboflavin), <i>Aspergillus niger</i> (citric acid) and <i>Aspergillus oryzae</i> (food-processing). While radial colony growth decreased 0.5-fold when <i>A</i>. <i>gossypii</i> was cultivated at 40°C instead of 28°C, <i>A. fumigatus</i> AR04 responded with 1.7-fold faster hyphal growth. <i>A</i>. <i>niger</i> and <i>A. oryzae</i> formed colonies at 40°C, but not at 43°C. Moreover, all <i>A. fumigatus</i> strains tested grew even at 49°C. In chemostat experiments, <i>A</i>. <i>fumigatus</i> AR04 reached steady state at a dilution rate of 0.7 h<sup>-1</sup> at 40°C, 120% more than reported for <i>A. gossypii</i> at 28°C. To study mycelial growth rates under unlimited conditions, carbon dioxide increase rates were calculated from concentrations detected online in the exhaust of batch fermentations for 3 h only. All rates calculated suggest that <i>A. fumigatus</i> AR04 approximates Arrhenius’ rule when comparing short cultivations at 30°C with those at 40°C. Linearization of the exponential phase and comparison of the slopes revealed an increase to 192% by the 10°C up-shift.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 4","pages":"1422-1432"},"PeriodicalIF":5.7,"publicationDate":"2021-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6164591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanja Narancic, Manuel Salvador, Graham M. Hughes, Niall Beagan, Umar Abdulmutalib, Shane T. Kenny, Huihai Wu, Marta Saccomanno, Jounghyun Um, Kevin E. O'Connor, José I. Jiménez
{"title":"Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates","authors":"Tanja Narancic, Manuel Salvador, Graham M. Hughes, Niall Beagan, Umar Abdulmutalib, Shane T. Kenny, Huihai Wu, Marta Saccomanno, Jounghyun Um, Kevin E. O'Connor, José I. Jiménez","doi":"10.1111/1751-7915.13712","DOIUrl":"https://doi.org/10.1111/1751-7915.13712","url":null,"abstract":"<p>The throwaway culture related to the single-use materials such as polyethylene terephthalate (PET) has created a major environmental concern. Recycling of PET waste into biodegradable plastic polyhydroxyalkanoate (PHA) creates an opportunity to improve resource efficiency and contribute to a circular economy. We sequenced the genome of <i>Pseudomonas umsongensis</i> GO16 previously shown to convert PET-derived terephthalic acid (TA) into PHA and performed an in-depth genome analysis. GO16 can degrade a range of aromatic substrates in addition to TA, due to the presence of a catabolic plasmid pENK22. The genetic complement required for the degradation of TA <i>via</i> protocatechuate was identified and its functionality was confirmed by transferring the <i>tph</i> operon into <i>Pseudomonas putida</i> KT2440, which is unable to utilize TA naturally. We also identified the genes involved in ethylene glycol (EG) metabolism, the second PET monomer, and validated the capacity of GO16 to use EG as a sole source of carbon and energy. Moreover, GO16 possesses genes for the synthesis of both medium and short chain length PHA and we have demonstrated the capacity of the strain to convert mixed TA and EG into PHA. The metabolic versatility of GO16 highlights the potential of this organism for biotransformations using PET waste as a feedstock.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 6","pages":"2463-2480"},"PeriodicalIF":5.7,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13712","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6115385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Shaw, Samuel Miravet-Verde, Carlos Pi?ero-Lambea, Luis Serrano, Maria Lluch-Senar
{"title":"LoxTnSeq: random transposon insertions combined with cre/lox recombination and counterselection to generate large random genome reductions","authors":"Daniel Shaw, Samuel Miravet-Verde, Carlos Pi?ero-Lambea, Luis Serrano, Maria Lluch-Senar","doi":"10.1111/1751-7915.13714","DOIUrl":"https://doi.org/10.1111/1751-7915.13714","url":null,"abstract":"<p>The removal of unwanted genetic material is a key aspect in many synthetic biology efforts and often requires preliminary knowledge of which genomic regions are dispensable. Typically, these efforts are guided by transposon mutagenesis studies, coupled to deepsequencing (TnSeq) to identify insertion points and gene essentiality. However, epistatic interactions can cause unforeseen changes in essentiality after the deletion of a gene, leading to the redundancy of these essentiality maps. Here, we present LoxTnSeq, a new methodology to generate and catalogue libraries of genome reduction mutants. LoxTnSeq combines random integration of lox sites by transposon mutagenesis, and the generation of mutants via Cre recombinase, catalogued via deep sequencing. When LoxTnSeq was applied to the naturally genome reduced bacterium <i>Mycoplasma pneumoniae</i>, we obtained a mutant pool containing 285 unique deletions. These deletions spanned from > 50 bp to 28 Kb, which represents 21% of the total genome. LoxTnSeq also highlighted large regions of non-essential genes that could be removed simultaneously, and other non-essential regions that could not, providing a guide for future genome reductions.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 6","pages":"2403-2419"},"PeriodicalIF":5.7,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13714","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5682100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}