Evodevo最新文献

筛选
英文 中文
Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. 聚集多细胞平行演化中尺度物理与类因子行为的相互作用。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-10-12 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00165-8
Juan A Arias Del Angel, Vidyanand Nanjundiah, Mariana Benítez, Stuart A Newman
{"title":"Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity.","authors":"Juan A Arias Del Angel,&nbsp;Vidyanand Nanjundiah,&nbsp;Mariana Benítez,&nbsp;Stuart A Newman","doi":"10.1186/s13227-020-00165-8","DOIUrl":"https://doi.org/10.1186/s13227-020-00165-8","url":null,"abstract":"<p><p>Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between <i>generic processes</i>, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10<sup>-3</sup>-10<sup>-1</sup> m) and <i>agent-like behaviors</i>, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"21"},"PeriodicalIF":4.1,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-00165-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38596079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution 海胆(Paracentrotus lividus)的后变质骨骼生长及其对体型进化的影响
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-10-09 DOI: 10.1101/2020.10.09.332957
J. Thompson, Periklis Paganos, G. Benvenuto, M. Arnone, P. Oliveri
{"title":"Post-metamorphic skeletal growth in the sea urchin Paracentrotus lividus and implications for body plan evolution","authors":"J. Thompson, Periklis Paganos, G. Benvenuto, M. Arnone, P. Oliveri","doi":"10.1101/2020.10.09.332957","DOIUrl":"https://doi.org/10.1101/2020.10.09.332957","url":null,"abstract":"Background Understanding the molecular and cellular processes that underpin animal development are crucial for understanding the diversity of body plans found on the planet today. Because of their abundance in the fossil record, and tractability as a model system in the lab, skeletons provide an ideal experimental model to understand the origins of animal diversity. We herein use molecular and cellular markers to understand the growth and development of the juvenile sea urchin (echinoid) skeleton. Results We developed a detailed staging scheme based off of the first ~ 4 weeks of post-metamorphic life of the regular echinoid Paracentrotus lividus . We paired this scheme with immunohistochemical staining for neuronal, muscular, and skeletal tissues, and fluorescent assays of skeletal growth and cell proliferation to understand the molecular and cellular mechanisms underlying skeletal growth and development of the sea urchin body plan. Conclusions Our experiments highlight the role of skeletogenic proteins in accretionary skeletal growth and cell proliferation in the addition of new metameric tissues. Furthermore, this work provides a framework for understanding the developmental evolution of sea urchin body plans on macroevolutionary timescales.","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"12 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44037278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Anemonefish, a model for Eco-Evo-Devo. 海葵鱼,Eco-Evo-Devo的典范。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-10-07 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00166-7
Natacha Roux, Pauline Salis, Shu-Hua Lee, Laurence Besseau, Vincent Laudet
{"title":"Anemonefish, a model for Eco-Evo-Devo.","authors":"Natacha Roux,&nbsp;Pauline Salis,&nbsp;Shu-Hua Lee,&nbsp;Laurence Besseau,&nbsp;Vincent Laudet","doi":"10.1186/s13227-020-00166-7","DOIUrl":"https://doi.org/10.1186/s13227-020-00166-7","url":null,"abstract":"<p><p>Anemonefish, are a group of about 30 species of damselfish (Pomacentridae) that have long aroused the interest of coral reef fish ecologists. Combining a series of original biological traits and practical features in their breeding that are described in this paper, anemonefish are now emerging as an experimental system of interest for developmental biology, ecology and evolutionary sciences. They are small sized and relatively easy to breed in specific husbandries, unlike the large-sized marine fish used for aquaculture. Because they live in highly structured social groups in sea anemones, anemonefish allow addressing a series of relevant scientific questions such as the social control of growth and sex change, the mechanisms controlling symbiosis, the establishment and variation of complex color patterns, and the regulation of aging. Combined with the use of behavioral experiments, that can be performed in the lab or directly in the wild, as well as functional genetics and genomics, anemonefish provide an attractive experimental system for Eco-Evo-Devo.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"20"},"PeriodicalIF":4.1,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-00166-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38477186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
Ectocarpus: an evo-devo model for the brown algae. 外果藻:褐藻的进化-发育模型。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-08-31 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00164-9
Susana M Coelho, Akira F Peters, Dieter Müller, J Mark Cock
{"title":"<i>Ectocarpus</i>: an evo-devo model for the brown algae.","authors":"Susana M Coelho, Akira F Peters, Dieter Müller, J Mark Cock","doi":"10.1186/s13227-020-00164-9","DOIUrl":"10.1186/s13227-020-00164-9","url":null,"abstract":"<p><p><i>Ectocarpus</i> is a genus of filamentous, marine brown algae. Brown algae belong to the stramenopiles, a large supergroup of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of <i>Ectocarpus</i> as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using <i>Ectocarpus</i> as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"19"},"PeriodicalIF":4.1,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38333972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning. 用于鞭毛蛛(Amblypygi)发育研究的基因组资源和工具包为蛛形纲基因组进化和触角腿模式化提供了见解。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-08-28 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00163-w
Guilherme Gainett, Prashant P Sharma
{"title":"Genomic resources and toolkits for developmental study of whip spiders (Amblypygi) provide insights into arachnid genome evolution and antenniform leg patterning.","authors":"Guilherme Gainett, Prashant P Sharma","doi":"10.1186/s13227-020-00163-w","DOIUrl":"10.1186/s13227-020-00163-w","url":null,"abstract":"<p><strong>Background: </strong>The resurgence of interest in the comparative developmental study of chelicerates has led to important insights, such as the discovery of a genome duplication shared by spiders and scorpions, inferred to have occurred in the most recent common ancestor of Arachnopulmonata (a clade comprising the five arachnid orders that bear book lungs). Nonetheless, several arachnid groups remain understudied in the context of development and genomics, such as the order Amblypygi (whip spiders). The phylogenetic position of Amblypygi in Arachnopulmonata posits them as an interesting group to test the incidence of the proposed genome duplication in the common ancestor of Arachnopulmonata, as well as the degree of retention of duplicates over 450 Myr. Moreover, whip spiders have their first pair of walking legs elongated and modified into sensory appendages (a convergence with the antennae of mandibulates), but the genetic patterning of these antenniform legs has never been investigated.</p><p><strong>Results: </strong>We established genomic resources and protocols for cultivation of embryos and gene expression assays by in situ hybridization to study the development of the whip spider <i>Phrynus marginemaculatus</i>. Using embryonic transcriptomes from three species of Amblypygi, we show that the ancestral whip spider exhibited duplications of all ten Hox genes. We deploy these resources to show that paralogs of the leg gap genes <i>dachshund</i> and <i>homothorax</i> retain arachnopulmonate-specific expression patterns in <i>P. marginemaculatus</i>. We characterize the expression of leg gap genes <i>Distal</i>-<i>less</i>, <i>dachshund</i>-<i>1/2</i> and <i>homothorax</i>-<i>1/2</i> in the embryonic antenniform leg and other appendages, and provide evidence that allometry, and by extension the antenniform leg fate, is specified early in embryogenesis.</p><p><strong>Conclusion: </strong>This study is the first step in establishing <i>P. marginemaculatus</i> as a chelicerate model for modern evolutionary developmental study, and provides the first resources sampling whip spiders for comparative genomics. Our results suggest that Amblypygi share a genome duplication with spiders and scorpions, and set up a framework to study the genetic specification of antenniform legs. Future efforts to study whip spider development must emphasize the development of tools for functional experiments in <i>P. marginemaculatus</i>.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"18"},"PeriodicalIF":4.1,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38333971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activin/Nodal signaling mediates dorsal-ventral axis formation before third quartet formation in embryos of the annelid Chaetopterus pergamentaceus. 激活素/结节信号介导环带动物Chaetopterus pergamentaceus胚胎第三四分体形成之前的背腹轴形成。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-08-10 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00161-y
Alexis R Lanza, Elaine C Seaver
{"title":"Activin/Nodal signaling mediates dorsal-ventral axis formation before third quartet formation in embryos of the annelid <i>Chaetopterus pergamentaceus</i>.","authors":"Alexis R Lanza, Elaine C Seaver","doi":"10.1186/s13227-020-00161-y","DOIUrl":"10.1186/s13227-020-00161-y","url":null,"abstract":"<p><strong>Background: </strong>The clade of protostome animals known as the Spiralia (e.g., mollusks, annelids, nemerteans and polyclad flatworms) shares a highly conserved program of early development. This includes shared arrangement of cells in the early-stage embryo and fates of descendant cells into embryonic quadrants. In spiralian embryos, a single cell in the D quadrant functions as an embryonic organizer to pattern the body axes. The precise timing of the organizing signal and its cellular identity varies among spiralians. Previous experiments in the annelid <i>Chaetopterus pergamentaceus</i> Cuvier, 1830 demonstrated that the D quadrant possesses an organizing role in body axes formation; however, the molecular signal and exact cellular identity of the organizer were unknown.</p><p><strong>Results: </strong>In this study, the timing of the signal and the specific signaling pathway that mediates organizing activity in <i>C. pergamentaceus</i> was investigated through short exposures to chemical inhibitors during early cleavage stages. Chemical interference of the Activin/Nodal pathway but not the BMP or MAPK pathways results in larvae that lack a detectable dorsal-ventral axis. Furthermore, these data show that the duration of organizing activity encompasses the 16 cell stage and is completed before the 32 cell stage.</p><p><strong>Conclusions: </strong>The timing and molecular signaling pathway of the <i>C. pergamentaceus</i> organizer is comparable to that of another annelid, <i>Capitella teleta</i>, whose organizing signal is required through the 16 cell stage and localizes to micromere 2d. Since <i>C. pergamentaceus</i> is an early branching annelid, these data in conjunction with functional genomic investigations in <i>C. teleta</i> hint that the ancestral state of annelid dorsal-ventral axis patterning involved an organizing signal that occurs one to two cell divisions earlier than the organizing signal identified in mollusks, and that the signal is mediated by Activin/Nodal signaling. Our findings have significant evolutionary implications within the Spiralia, and furthermore suggest that global body patterning mechanisms may not be as conserved across bilaterians as was previously thought.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"17"},"PeriodicalIF":4.1,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38259385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution and development of three highly specialized floral structures of bee-pollinated Phalaenopsis species. 蜂传粉蝴蝶兰三种高度专门化花结构的进化与发育。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-08-10 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00160-z
Dewi Pramanik, Nemi Dorst, Niels Meesters, Marlies Spaans, Erik Smets, Monique Welten, Barbara Gravendeel
{"title":"Evolution and development of three highly specialized floral structures of bee-pollinated <i>Phalaenopsis</i> species.","authors":"Dewi Pramanik,&nbsp;Nemi Dorst,&nbsp;Niels Meesters,&nbsp;Marlies Spaans,&nbsp;Erik Smets,&nbsp;Monique Welten,&nbsp;Barbara Gravendeel","doi":"10.1186/s13227-020-00160-z","DOIUrl":"https://doi.org/10.1186/s13227-020-00160-z","url":null,"abstract":"<p><strong>Background: </strong>Variation in shape and size of many floral organs is related to pollinators. Evolution of such organs is driven by duplication and modification of MADS-box and MYB transcription factors. We applied a combination of micro-morphological (SEM and micro 3D-CT scanning) and molecular techniques (transcriptome and RT-PCR analysis) to understand the evolution and development of the callus, stelidia and mentum, three highly specialized floral structures of orchids involved in pollination. Early stage and mature tissues were collected from flowers of the bee-pollinated <i>Phalaenopsis equestris</i> and <i>Phalaenopsis pulcherrima</i>, two species that differ in floral morphology: <i>P. equestris</i> has a large callus but short stelidia and no mentum, whereas <i>P. pulcherrima</i> has a small callus, but long stelidia and a pronounced mentum.</p><p><strong>Results: </strong>Our results show the stelidia develop from early primordial stages, whereas the callus and mentum develop later. In combination, the micro 3D-CT scan analysis and gene expression analyses show that the callus is of mixed petaloid-staminodial origin, the stelidia of staminodial origin, and the mentum of mixed sepaloid-petaloid-staminodial origin. <i>SEP</i> clade 1 copies are expressed in the larger callus of <i>P. equestris</i>, whereas <i>AP3</i> clade 1 and <i>AGL6</i> clade 1 copies are expressed in the pronounced mentum and long stelidia of <i>P. pulcherrima. AP3</i> clade 4, <i>PI</i>-, <i>AGL6</i> clade 2 and <i>PCF</i> clade 1 copies might have a balancing role in callus and gynostemium development. There appears to be a trade-off between <i>DIV</i> clade 2 expression with <i>SEP</i> clade 1 expression in the callus, on the one hand, and with <i>AP3</i> clade 1 and <i>AGL6</i> clade 1 expression in the stelidia and mentum on the other.</p><p><strong>Conclusions: </strong>We detected differential growth and expression of MADS box <i>AP3/PI</i>-like, <i>AGL</i>6-like and <i>SEP</i>-like, and MYB <i>DIV</i>-like gene copies in the callus, stelidia and mentum of two species of <i>Phalaenopsis,</i> of which these floral structures are very differently shaped and sized. Our study provides a first glimpse of the evolutionary developmental mechanisms driving adaptation of <i>Phalaenopsis</i> flowers to different pollinators by providing combined micro-morphological and molecular evidence for a possible sepaloid-petaloid-staminodial origin of the orchid mentum.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"16"},"PeriodicalIF":4.1,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-00160-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38263310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Expression of smooth muscle-like effectors and core cardiomyocyte regulators in the contractile papillae of Ciona. 类平滑肌效应因子和核心心肌细胞调节因子在纤毛虫收缩乳头中的表达。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-08-03 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00162-x
Christopher J Johnson, Florian Razy-Krajka, Alberto Stolfi
{"title":"Expression of smooth muscle-like effectors and core cardiomyocyte regulators in the contractile papillae of <i>Ciona</i>.","authors":"Christopher J Johnson, Florian Razy-Krajka, Alberto Stolfi","doi":"10.1186/s13227-020-00162-x","DOIUrl":"10.1186/s13227-020-00162-x","url":null,"abstract":"<p><strong>Background: </strong>The evolution of vertebrate smooth muscles is obscured by lack of identifiable smooth muscle-like cells in tunicates, the invertebrates most closely related to vertebrates. A recent evolutionary model was proposed in which smooth muscles arose before the last bilaterian common ancestor, and were later diversified, secondarily lost or modified in the branches leading to extant animal taxa. However, there is currently no data from tunicates to support this scenario.</p><p><strong>Methods and results: </strong>Here, we show that the axial columnar cells, a unique cell type in the adhesive larval papillae of the tunicate <i>Ciona,</i> are enriched for orthologs of vertebrate smooth/non-muscle-specific effectors of contractility, in addition to developing from progenitors that express conserved cardiomyocyte regulatory factors. We show that these cells contract during the retraction of the <i>Ciona</i> papillae during larval settlement and metamorphosis.</p><p><strong>Conclusions: </strong>We propose that the axial columnar cells of <i>Ciona</i> are a myoepithelial cell type required for transducing external stimuli into mechanical forces that aid in the attachment of the motile larva to its final substrate. Furthermore, they share developmental and functional features with vertebrate myoepithelial cells, vascular smooth muscle cells, and cardiomyocytes. We discuss these findings in the context of the proposed models of vertebrate smooth muscle and cardiomyocyte evolution.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"15"},"PeriodicalIF":4.1,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397655/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38246441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astyanax surface and cave fish morphs. Astyanax 表层鱼和洞穴鱼的变形。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-07-11 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00159-6
William R Jeffery
{"title":"<i>Astyanax</i> surface and cave fish morphs.","authors":"William R Jeffery","doi":"10.1186/s13227-020-00159-6","DOIUrl":"10.1186/s13227-020-00159-6","url":null,"abstract":"<p><p>The small teleost fish <i>Astyanax mexicanus</i> has emerged as an outstanding model for studying many biological topics in the context of evolution. A major attribute is conspecific surface dwelling (surface fish) and blind cave dwelling (cavefish) morphs that can be raised in the laboratory and spawn large numbers of transparent and synchronously developing embryos. More than 30 cavefish populations have been discovered, mostly in northeastern Mexico, and some are thought to have evolved independently from surface fish ancestors, providing excellent models of parallel and convergent evolution. Cavefish have evolved eye and pigmentation regression, as well as modifications in brain morphology, behaviors, heart regenerative capacity, metabolic processes, and craniofacial organization. Thus, the <i>Astyanax</i> model provides researchers with natural \"mutants\" to study life in the challenging cave environment. The application of powerful genetic approaches based on hybridization between the two morphs and between the different cavefish populations are key advantages for deciphering the developmental and genetic mechanisms regulating trait evolution. QTL analysis has revealed the genetic architectures of gained and lost traits. In addition, some cavefish traits resemble human diseases, offering novel models for biomedical research. <i>Astyanax</i> research is supported by genome assemblies, transcriptomes, tissue and organ transplantation, gene manipulation and editing, and stable transgenesis, and benefits from a welcoming and interactive research community that conducts integrated community projects and sponsors the International Astyanax Meeting (AIM).</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"14"},"PeriodicalIF":4.1,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38168717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volvox and volvocine green algae. 团藻和团藻绿藻。
IF 4.1 2区 生物学
Evodevo Pub Date : 2020-07-01 eCollection Date: 2020-01-01 DOI: 10.1186/s13227-020-00158-7
James G Umen
{"title":"Volvox and volvocine green algae.","authors":"James G Umen","doi":"10.1186/s13227-020-00158-7","DOIUrl":"https://doi.org/10.1186/s13227-020-00158-7","url":null,"abstract":"<p><p>The transition of life from single cells to more complex multicellular forms has occurred at least two dozen times among eukaryotes and is one of the major evolutionary transitions, but the early steps that enabled multicellular life to evolve and thrive remain poorly understood. Volvocine green algae are a taxonomic group that is uniquely suited to investigating the step-wise acquisition of multicellular organization. The multicellular volvocine species <i>Volvox carteri</i> exhibits many hallmarks of complex multicellularity including complete germ-soma division of labor, asymmetric cell divisions, coordinated tissue-level morphogenesis, and dimorphic sexes-none of which have obvious analogs in its closest unicellular relative, the model alga <i>Chlamydomonas reinhardtii</i>. Here, I summarize some of the key questions and areas of study that are being addressed with <i>Volvox carteri</i> and how increasing genomic information and methodologies for volvocine algae are opening up the entire group as an integrated experimental system for exploring the evolution of multicellularity and more.</p>","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":" ","pages":"13"},"PeriodicalIF":4.1,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13227-020-00158-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38120455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信