PLoS Genetics最新文献

筛选
英文 中文
PNLDC1 catalysis and postnatal germline function are required for piRNA trimming, LINE1 silencing, and spermatogenesis in mice. 小鼠的 piRNA 修剪、LINE1 沉默和精子发生需要 PNLDC1 催化和出生后生殖系功能。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-23 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011429
Chao Wei, Xiaoyuan Yan, Jeffrey M Mann, Ruirong Geng, Qianyi Wang, Huirong Xie, Elena Y Demireva, Liangliang Sun, Deqiang Ding, Chen Chen
{"title":"PNLDC1 catalysis and postnatal germline function are required for piRNA trimming, LINE1 silencing, and spermatogenesis in mice.","authors":"Chao Wei, Xiaoyuan Yan, Jeffrey M Mann, Ruirong Geng, Qianyi Wang, Huirong Xie, Elena Y Demireva, Liangliang Sun, Deqiang Ding, Chen Chen","doi":"10.1371/journal.pgen.1011429","DOIUrl":"10.1371/journal.pgen.1011429","url":null,"abstract":"<p><p>PIWI-interacting RNAs (piRNAs) play critical and conserved roles in transposon silencing and gene regulation in the animal germline. Three distinct piRNA populations are present during mouse spermatogenesis: fetal piRNAs in fetal/perinatal testes, pre-pachytene and pachytene piRNAs in postnatal testes. PNLDC1 is required for piRNA 3' end maturation in multiple species. However, whether PNLDC1 is the bona fide piRNA trimmer and the physiological role of 3' trimming of different piRNA populations in spermatogenesis in mammals remain unclear. Here, by inactivating Pnldc1 exonuclease activity in vitro and in mice, we reveal that the PNLDC1 trimmer activity is essential for spermatogenesis and male fertility. PNLDC1 catalytic activity is required for both fetal and postnatal piRNA 3' end trimming. Despite this, postnatal piRNA trimming but not fetal piRNA trimming is critical for LINE1 transposon silencing. Furthermore, conditional inactivation of Pnldc1 in postnatal germ cells causes LINE1 transposon de-repression and spermatogenic arrest in mice, indicating that germline-specific postnatal piRNA trimming is essential for transposon silencing and germ cell development. Our findings highlight the germ cell-intrinsic role of PNLDC1 and piRNA trimming in mammals to safeguard the germline genome and promote fertility.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011429"},"PeriodicalIF":4.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upstream open reading frames repress the translation from the iab-8 RNA. 上游开放阅读框抑制了 iab-8 RNA 的翻译。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-23 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011214
Yohan Frei, Clément Immarigeon, Maxime Revel, François Karch, Robert K Maeda
{"title":"Upstream open reading frames repress the translation from the iab-8 RNA.","authors":"Yohan Frei, Clément Immarigeon, Maxime Revel, François Karch, Robert K Maeda","doi":"10.1371/journal.pgen.1011214","DOIUrl":"10.1371/journal.pgen.1011214","url":null,"abstract":"<p><p>Although originally classified as a non-coding RNA, the male-specific abdominal (MSA) RNA from the Drosophila melanogaster bithorax complex has recently been shown to code for a micropeptide that plays a vital role in determining how mated females use stored sperm after mating. Interestingly, the MSA transcript is a male-specific version of another transcript produced in both sexes within the posterior central nervous system from an alternative promoter, called the iab-8 lncRNA. However, while the MSA transcript produces a small peptide, it seems that the iab-8 transcript does not. Here, we show that the absence of iab-8 translation is due to a repressive mechanism requiring the two unique 5' exons of the iab-8 lncRNA. Through cell culture and transgenic analysis, we show that this mechanism relies on the presence of upstream open reading frames present in these two exons that prevent the production of proteins from downstream open reading frames.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011214"},"PeriodicalIF":4.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463788/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining models of dominance for nonsynonymous mutations in the human genome. 制约人类基因组非同义突变的优势模型。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-20 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011198
Christopher C Kyriazis, Kirk E Lohmueller
{"title":"Constraining models of dominance for nonsynonymous mutations in the human genome.","authors":"Christopher C Kyriazis, Kirk E Lohmueller","doi":"10.1371/journal.pgen.1011198","DOIUrl":"10.1371/journal.pgen.1011198","url":null,"abstract":"<p><p>Dominance is a fundamental parameter in genetics, determining the dynamics of natural selection on deleterious and beneficial mutations, the patterns of genetic variation in natural populations, and the severity of inbreeding depression in a population. Despite this importance, dominance parameters remain poorly known, particularly in humans or other non-model organisms. A key reason for this lack of information about dominance is that it is extremely challenging to disentangle the selection coefficient (s) of a mutation from its dominance coefficient (h). Here, we explore dominance and selection parameters in humans by fitting models to the site frequency spectrum (SFS) for nonsynonymous mutations. When assuming a single dominance coefficient for all nonsynonymous mutations, we find that numerous h values can fit the data, so long as h is greater than ~0.15. Moreover, we also observe that theoretically-predicted models with a negative relationship between h and s can also fit the data well, including models with h = 0.05 for strongly deleterious mutations. Finally, we use our estimated dominance and selection parameters to inform simulations revisiting the question of whether the out-of-Africa bottleneck has led to differences in genetic load between African and non-African human populations. These simulations suggest that the relative burden of genetic load in non-African populations depends on the dominance model assumed, with slight increases for more weakly recessive models and slight decreases shown for more strongly recessive models. Moreover, these results also demonstrate that models of partially recessive nonsynonymous mutations can explain the observed severity of inbreeding depression in humans, bridging the gap between molecular population genetics and direct measures of fitness in humans. Our work represents a comprehensive assessment of dominance and deleterious variation in humans, with implications for parameterizing models of deleterious variation in humans and other mammalian species.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011198"},"PeriodicalIF":4.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel tolerance is channeled through C-4 methyl sterol oxidase Erg25 in the sterol biosynthesis pathway. 耐镍性是通过固醇生物合成途径中的 C-4 甲基固醇氧化酶 Erg25 实现的。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-16 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011413
Amber R Matha, Xiaofeng Xie, Robert J Maier, Xiaorong Lin
{"title":"Nickel tolerance is channeled through C-4 methyl sterol oxidase Erg25 in the sterol biosynthesis pathway.","authors":"Amber R Matha, Xiaofeng Xie, Robert J Maier, Xiaorong Lin","doi":"10.1371/journal.pgen.1011413","DOIUrl":"10.1371/journal.pgen.1011413","url":null,"abstract":"<p><p>Nickel (Ni) is an abundant element on Earth and it can be toxic to all forms of life. Unlike our knowledge of other metals, little is known about the biochemical response to Ni overload. Previous studies in mammals have shown that Ni induces various physiological changes including redox stress, hypoxic responses, as well as cancer progression pathways. However, the primary cellular targets of nickel toxicity are unknown. Here, we used the environmental fungus Cryptococcus neoformans as a model organism to elucidate the cellular response to exogenous Ni. We discovered that Ni causes alterations in ergosterol (the fungal equivalent of mammalian cholesterol) and lipid biosynthesis, and that the Sterol Regulatory Element-Binding transcription factor Sre1 is required for Ni tolerance. Interestingly, overexpression of the C-4 methyl sterol oxidase gene ERG25, but not other genes in the ergosterol biosynthesis pathway tested, increases Ni tolerance in both the wild type and the sre1Δ mutant. Overexpression of ERG25 with mutations in the predicted binding pocket to a metal cation cofactor sensitizes Cryptococcus to nickel and abolishes its ability to rescue the Ni-induced growth defect of sre1Δ. As overexpression of a known nickel-binding protein Ure7 or Erg3 with a metal binding pocket similar to Erg25 does not impact on nickel tolerance, Erg25 does not appear to simply act as a nickel sink. Furthermore, nickel induces more profound and specific transcriptome changes in ergosterol biosynthetic genes compared to hypoxia. We conclude that Ni targets the sterol biosynthesis pathway primarily through Erg25 in fungi. Similar to the observation in C. neoformans, Ni exposure reduces sterols in human A549 lung epithelial cells, indicating that nickel toxicity on sterol biosynthesis is conserved.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011413"},"PeriodicalIF":4.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution recovers the fitness of Acinetobacter baylyi strains with large deletions through mutations in deletion-specific targets and global post-transcriptional regulators. 通过缺失特异性靶标和全局转录后调控因子的突变,进化恢复了具有大量缺失的巴氏不动杆菌菌株的适应性。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-16 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011306
Isaac Gifford, Gabriel A Suárez, Jeffrey E Barrick
{"title":"Evolution recovers the fitness of Acinetobacter baylyi strains with large deletions through mutations in deletion-specific targets and global post-transcriptional regulators.","authors":"Isaac Gifford, Gabriel A Suárez, Jeffrey E Barrick","doi":"10.1371/journal.pgen.1011306","DOIUrl":"10.1371/journal.pgen.1011306","url":null,"abstract":"<p><p>Organelles and endosymbionts have naturally evolved dramatically reduced genome sizes compared to their free-living ancestors. Synthetic biologists have purposefully engineered streamlined microbial genomes to create more efficient cellular chassis and define the minimal components of cellular life. During natural or engineered genome streamlining, deletion of many non-essential genes in combination often reduces bacterial fitness for idiosyncratic or unknown reasons. We investigated how and to what extent laboratory evolution could overcome these defects in six variants of the transposon-free Acinetobacter baylyi strain ADP1-ISx that each had a deletion of a different 22- to 42-kilobase region and two strains with larger deletions of 70 and 293 kilobases. We evolved replicate populations of ADP1-ISx and each deletion strain for ~300 generations in a chemically defined minimal medium or a complex medium and sequenced the genomes of endpoint clonal isolates. Fitness increased in all cases that were examined except for two ancestors that each failed to improve in one of the two environments. Mutations affecting nine protein-coding genes and two small RNAs were significantly associated with one of the two environments or with certain deletion ancestors. The global post-transcriptional regulators rnd (ribonuclease D), csrA (RNA-binding carbon storage regulator), and hfq (RNA-binding protein and chaperone) were frequently mutated across all strains, though the incidence and effects of these mutations on gene function and bacterial fitness varied with the ancestral deletion and evolution environment. Mutations in this regulatory network likely compensate for how an earlier deletion of a transposon in the ADP1-ISx ancestor of all the deletion strains restored csrA function. More generally, our results demonstrate that fitness lost during genome streamlining can usually be regained rapidly through laboratory evolution and that recovery tends to occur through a combination of deletion-specific compensation and global regulatory adjustments.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011306"},"PeriodicalIF":4.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142299312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MR-SPLIT: A novel method to address selection and weak instrument bias in one-sample Mendelian randomization studies. MR-SPLIT:解决单样本孟德尔随机研究中选择偏差和弱工具偏差的新方法。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-06 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011391
Ruxin Shi, Ling Wang, Stephen Burgess, Yuehua Cui
{"title":"MR-SPLIT: A novel method to address selection and weak instrument bias in one-sample Mendelian randomization studies.","authors":"Ruxin Shi, Ling Wang, Stephen Burgess, Yuehua Cui","doi":"10.1371/journal.pgen.1011391","DOIUrl":"10.1371/journal.pgen.1011391","url":null,"abstract":"<p><p>Mendelian Randomization (MR) is a widely embraced approach to assess causality in epidemiological studies. Two-stage least squares (2SLS) method is a predominant technique in MR analysis. However, it can lead to biased estimates when instrumental variables (IVs) are weak. Moreover, the issue of the winner's curse could emerge when utilizing the same dataset for both IV selection and causal effect estimation, leading to biased estimates of causal effects and high false positives. Focusing on one-sample MR analysis, this paper introduces a novel method termed Mendelian Randomization with adaptive Sample-sPLitting with cross-fitting InstrumenTs (MR-SPLIT), designed to address bias issues due to IV selection and weak IVs, under the 2SLS IV regression framework. We show that the MR-SPLIT estimator is more efficient than its counterpart cross-fitting MR (CFMR) estimator. Additionally, we introduce a multiple sample-splitting technique to enhance the robustness of the method. We conduct extensive simulation studies to compare the performance of our method with its counterparts. The results underscored its superiority in bias reduction, effective type I error control, and increased power. We further demonstrate its utility through the application of a real-world dataset. Our study underscores the importance of addressing bias issues due to IV selection and weak IVs in one-sample MR analyses and provides a robust solution to the challenge.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011391"},"PeriodicalIF":4.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RluA is the major mRNA pseudouridine synthase in Escherichia coli. RluA 是大肠杆菌中主要的 mRNA 假尿苷合成酶。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-06 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011100
Cassandra Schaening-Burgos, Hannah LeBlanc, Christian Fagre, Gene-Wei Li, Wendy V Gilbert
{"title":"RluA is the major mRNA pseudouridine synthase in Escherichia coli.","authors":"Cassandra Schaening-Burgos, Hannah LeBlanc, Christian Fagre, Gene-Wei Li, Wendy V Gilbert","doi":"10.1371/journal.pgen.1011100","DOIUrl":"10.1371/journal.pgen.1011100","url":null,"abstract":"<p><p>Pseudouridine (Ψ) is an ubiquitous RNA modification, present in the tRNAs and rRNAs of species across all domains of life. Conserved pseudouridine synthases modify the mRNAs of diverse eukaryotes, but the modification has yet to be identified in bacterial mRNAs. Here, we report the discovery of pseudouridines in mRNA from E. coli. By testing the mRNA modification capacity of all 11 known pseudouridine synthases, we identify RluA as the predominant mRNA-modifying enzyme. RluA, a known tRNA and 23S rRNA pseudouridine synthase, modifies at least 31 of the 44 high-confidence sites we identified in E. coli mRNAs. Using RNA structure probing data to inform secondary structures, we show that the target sites of RluA occur in a common sequence and structural motif comprised of a ΨURAA sequence located in the loop of a short hairpin. This recognition element is shared with previously identified target sites of RluA in tRNAs and rRNA. Overall, our work identifies pseudouridine in key mRNAs and suggests the capacity of Ψ to regulate the transcripts that contain it.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011100"},"PeriodicalIF":4.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrative taxonomy approach reveals Saccharomyces chiloensis sp. nov. as a newly discovered species from Coastal Patagonia. 综合分类法揭示了新发现的巴塔哥尼亚酵母菌(Saccharomyces chiloensis sp.
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-06 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011396
Tomas A Peña, Pablo Villarreal, Nicolas Agier, Matteo De Chiara, Tomas Barría, Kamila Urbina, Carlos A Villarroel, Ana R O Santos, Carlos A Rosa, Roberto F Nespolo, Gianni Liti, Gilles Fischer, Francisco A Cubillos
{"title":"An integrative taxonomy approach reveals Saccharomyces chiloensis sp. nov. as a newly discovered species from Coastal Patagonia.","authors":"Tomas A Peña, Pablo Villarreal, Nicolas Agier, Matteo De Chiara, Tomas Barría, Kamila Urbina, Carlos A Villarroel, Ana R O Santos, Carlos A Rosa, Roberto F Nespolo, Gianni Liti, Gilles Fischer, Francisco A Cubillos","doi":"10.1371/journal.pgen.1011396","DOIUrl":"10.1371/journal.pgen.1011396","url":null,"abstract":"<p><p>Species delineation in microorganisms is challenging due to the limited markers available for accurate species assignment. Here, we applied an integrative taxonomy approach, combining extensive sampling, whole-genome sequence-based classification, phenotypic profiling, and assessment of interspecific reproductive isolation. Our work reveals the presence of a distinct Saccharomyces lineage in Nothofagus forests of coastal Patagonia. This lineage, designated Saccharomyces chiloensis sp. nov., exhibits 7% genetic divergence from its sister species S. uvarum, as revealed by whole-genome sequencing and population analyses. The South America-C (SA-C) coastal Patagonia population forms a unique clade closely related to a previously described divergent S. uvarum population from Oceania (AUS, found in Australia and New Zealand). Our species reclassification is supported by a low Ortho Average Nucleotide Identity (OANI) of 93% in SA-C and AUS relative to S. uvarum, which falls below the suggested species delineation threshold of 95%, indicating an independent evolutionary lineage. Hybrid spore viability assessment provided compelling evidence that SA-C and AUS are reproductively isolated from S. uvarum. In addition, we found unique structural variants between S. chiloensis sp. nov. lineages, including large-scale chromosomal translocations and inversions, together with a distinct phenotypic profile, emphasizing their intraspecies genetic distinctiveness. We suggest that S. chiloensis sp. nov diverged from S. uvarum in allopatry due to glaciation, followed by post-glacial dispersal, resulting in distinct lineages on opposite sides of the Pacific Ocean. The discovery of S. chiloensis sp. nov. illustrates the uniqueness of Patagonia's coastal biodiversity and underscores the importance of adopting an integrative taxonomic approach in species delineation to unveil cryptic microbial species. The holotype of S. chiloensis sp. nov. is CBS 18620T.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011396"},"PeriodicalIF":4.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410238/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142143437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pleiotropic effects of PAB1 deletion: Extensive changes in the yeast proteome, transcriptome, and translatome. PAB1 基因缺失的多效应:酵母蛋白质组、转录组和翻译组的广泛变化
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-05 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011392
Kotchaphorn Mangkalaphiban, Robin Ganesan, Allan Jacobson
{"title":"Pleiotropic effects of PAB1 deletion: Extensive changes in the yeast proteome, transcriptome, and translatome.","authors":"Kotchaphorn Mangkalaphiban, Robin Ganesan, Allan Jacobson","doi":"10.1371/journal.pgen.1011392","DOIUrl":"10.1371/journal.pgen.1011392","url":null,"abstract":"<p><p>Cytoplasmic poly(A)-binding protein (PABPC; Pab1 in yeast) is thought to be involved in multiple steps of post-transcriptional control, including translation initiation, translation termination, and mRNA decay. To understand both the direct and indirect roles of PABPC in more detail, we have employed mass spectrometry to assess the abundance of the components of the yeast proteome, as well as RNA-Seq and Ribo-Seq to analyze changes in the abundance and translation of the yeast transcriptome, in cells lacking the PAB1 gene. We find that pab1Δ cells manifest drastic changes in the proteome and transcriptome, as well as defects in translation initiation and termination. Defects in translation initiation and the stabilization of specific classes of mRNAs in pab1Δ cells appear to be partly indirect consequences of reduced levels of specific initiation factors, decapping activators, and components of the deadenylation complex in addition to the general loss of Pab1's direct role in these processes. Cells devoid of Pab1 also manifested a nonsense codon readthrough phenotype indicative of a defect in translation termination. Collectively, our results indicate that, unlike the loss of simpler regulatory proteins, elimination of cellular Pab1 is profoundly pleiotropic and disruptive to numerous aspects of post-transcriptional regulation.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011392"},"PeriodicalIF":4.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications. 时间表观基因组调控可实现高效的噬菌体工程和噬菌体 DNA 修饰功能分析。
IF 4 2区 生物学
PLoS Genetics Pub Date : 2024-09-04 eCollection Date: 2024-09-01 DOI: 10.1371/journal.pgen.1011384
Nadiia Pozhydaieva, Franziska Anna Billau, Maik Wolfram-Schauerte, Adán Andrés Ramírez Rojas, Nicole Paczia, Daniel Schindler, Katharina Höfer
{"title":"Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications.","authors":"Nadiia Pozhydaieva, Franziska Anna Billau, Maik Wolfram-Schauerte, Adán Andrés Ramírez Rojas, Nicole Paczia, Daniel Schindler, Katharina Höfer","doi":"10.1371/journal.pgen.1011384","DOIUrl":"10.1371/journal.pgen.1011384","url":null,"abstract":"<p><p>Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011384"},"PeriodicalIF":4.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404850/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信