Zhiqiang Du , Yunliang Li , Yanfang Fu , Xianghan Zheng
{"title":"Blockchain-based access control architecture for multi-domain environments","authors":"Zhiqiang Du , Yunliang Li , Yanfang Fu , Xianghan Zheng","doi":"10.1016/j.pmcj.2024.101878","DOIUrl":"10.1016/j.pmcj.2024.101878","url":null,"abstract":"<div><p><span>Numerous users from diverse domains access information and perform various operations in multi-domain environments. These users have complex permissions that increase the risk of identity falsification, unauthorized access, and privacy breaches during cross-domain interactions. Consequently, implementing an access control architecture to prevent users from engaging in illicit activities is imperative. This paper proposes a novel blockchain-based access control architecture for multi-domain environments. By integrating the multi-domain environment within a federated chain, the architecture utilizes Decentralized Identifiers (DIDs) for user identification and relies on public/secret key pairs for operational execution. Verifiable credentials are used to authorize permissions and release resources, thereby ensuring </span>authentication<span> and preventing tampering and forgery. In addition, the architecture automates the authorization and access control processes through smart contracts<span>, thereby eliminating human intervention. Finally, we performed a simulation evaluation of the architecture. The most time-consuming process had a runtime of 1074 ms, primarily attributed to interactions with the blockchain. Concurrent testing revealed that with a concurrency level of 2000 demonstrated that the response times for read and write operations were maintained within 1000 ms and 4600 ms, respectively. In terms of storage efficiency, except for user registration, which incurred two gas charges, all the other processes required only one charge.</span></span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139372834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yimin Guo , Yajun Guo , Ping Xiong , Fan Yang , Chengde Zhang
{"title":"A provably secure and practical end-to-end authentication scheme for tactile Industrial Internet of Things","authors":"Yimin Guo , Yajun Guo , Ping Xiong , Fan Yang , Chengde Zhang","doi":"10.1016/j.pmcj.2024.101877","DOIUrl":"10.1016/j.pmcj.2024.101877","url":null,"abstract":"<div><p><span>In the Industrial Internet of Things (IIoT), </span>haptic<span><span><span> control of machines or robots can be managed remotely. However, with the emergence of Tactile Industrial Internet of Things (TIIoT), the transmission of haptic data over public channels has raised security and privacy concerns. In such an environment, mutual authentication between haptic users and remotely controlled entities is crucial to prevent illegal control by adversaries. Therefore, we propose an end-to-end </span>authentication scheme, SecTIIoT, to establish secure communication between haptic users and remote </span>IoT<span> devices. The scheme addresses security issues by using lightweight hash cryptographic primitives and employs a useful piggyback strategy to improve authentication efficiency. We demonstrate that SecTIIoT is resilient to various known attacks with formal security proofs and informal security analysis. Furthermore, our detailed performance analysis shows that SecTIIoT outperforms existing lightweight authentication schemes as it provides more security features while reducing computation and communication costs.</span></span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139372835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas Cariello , Seth Levine , Gang Zhou , Blair Hoplight , Paolo Gasti , Kiran S. Balagani
{"title":"SMARTCOPE: Smartphone Change Of Possession Evaluation for continuous authentication","authors":"Nicholas Cariello , Seth Levine , Gang Zhou , Blair Hoplight , Paolo Gasti , Kiran S. Balagani","doi":"10.1016/j.pmcj.2023.101873","DOIUrl":"10.1016/j.pmcj.2023.101873","url":null,"abstract":"<div><p><span><span>The goal of continuous smartphone authentication is to detect when the adversary has gained possession of the user’s device post-login. This is achieved by triggering re-authentication at fixed, frequent intervals. However, these intervals do not take into account external information that might indicate that the impostor has gained physical access to the user’s device. Continuous smartphone authentication typically relies on behavioral cues, such as hand movement and touchscreen swipes, that can be collected without interrupting the user’s activity. Because these behavioral signals are characterized by relatively high error rates compared to physiological </span>biometrics, their use at fixed intervals leads to unnecessary interruptions to the user’s activity in case of a false reject, </span><em>and</em> to not recognizing the impostor in case of a false accept.</p><p>To address these issues, in this paper we introduce a novel framework called SMARTCOPE: <em>Smartphone Change Of Possession Evaluation</em><span>. In this work, SMARTCOPE leverages smartphone movement signals collected during user activity to determine when the smartphone is no longer in the hands of its owner. When this occurs, SMARTCOPE triggers re-authentication. By using these signals, we are able to reduce the total number of re-authentication points while simultaneously lowering re-authentication error rates. Our analysis shows that our technique can reduce equal error rates<span> by over 40%, from 7.8% to 4.6% using movement and keystroke features. Further, we show that SMARTCOPE can be used to transform a static (login-time) authentication system, such as face recognition, to a continuous re-authentication system, with a significant increase in security and limited impact on usability.</span></span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Ghanbari , Nima Jafari Navimipour , Mehdi Hosseinzadeh , Hassan Shakeri , Aso Darwesh
{"title":"A New Lightweight Routing Protocol for Internet of Mobile Things Based on Low Power and Lossy Network Using a Fuzzy-Logic Method","authors":"Zahra Ghanbari , Nima Jafari Navimipour , Mehdi Hosseinzadeh , Hassan Shakeri , Aso Darwesh","doi":"10.1016/j.pmcj.2023.101872","DOIUrl":"10.1016/j.pmcj.2023.101872","url":null,"abstract":"<div><p><span><span>The IoT<span> devices with embedded mobile devices create the Internet of Mobile Things (IoMT) paradigm. Mobility is not supported by the routing protocol for low-power and lossy networks (RPL) created for static networks. IoMT has raised routing challenges such as link failure, instability, energy depletion, </span></span>packet loss<span>, and handover delay in the network. In this context, IoMT Fuzzy-based RPL (IoMT-FRPL) is proposed in this paper to enhance routing performance. Receiving Signal Strength Indicator (RSSI), </span></span>Euclidean distance<span>, Hop Count, and Expected Transmission Count (ETX) metrics are built into the fuzzy interface system for the mobile nodes in the network to conserve energy. The IoMT-FRPL consists of the following three key steps: The first steps are data transmission and motion investigation, the second is fuzzy-based prediction of a new static parent for the mobile node, and the third is verifying the unique attachment point. When conventional RPL, mRPL, and EMA-RPL were compared to IoMT-performance FRPL's in Cooja/Contiki 2.7, the simulation results revealed improvements in energy consumption, handover delay, packet delivery rate (PDR), and signaling cost.</span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139021172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy consumption of smartphones and IoT devices when using different versions of the HTTP protocol","authors":"Chiara Caiazza , Valerio Luconi , Alessio Vecchio","doi":"10.1016/j.pmcj.2023.101871","DOIUrl":"10.1016/j.pmcj.2023.101871","url":null,"abstract":"<div><p>HTTP is frequently used by smartphones and IoT devices to access information and Web services. Nowadays, HTTP is used in three major versions, each introducing significant changes with respect to the previous one. We evaluated the energy consumption of the major versions of the HTTP protocol when used in the communication between energy-constrained devices and cloud-based or edge-based services. Experimental results show that in a machine-to-machine communication scenario, for the considered client devices – a smartphone and a Single Board Computer – and for a number of cloud/edge services and facilities, HTTP/3 frequently requires more energy than the previous versions of the protocol. The focus of our analysis is on machine-to-machine communication, but to obtain a broader view we also considered a client–server interaction pattern that is more browsing-like. In this case, HTTP/3 can be more energy efficient than the other versions.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574119223001293/pdfft?md5=c73530019c8ccf2d77f8c4830f5951c0&pid=1-s2.0-S1574119223001293-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PDCHAR: Human activity recognition via multi-sensor wearable networks using two-channel convolutional neural networks","authors":"Yvxuan Ren, Dandan Zhu, Kai Tong, Lulu Xv, Zhengtai Wang, Lixin Kang, Jinguo Chai","doi":"10.1016/j.pmcj.2023.101868","DOIUrl":"10.1016/j.pmcj.2023.101868","url":null,"abstract":"<div><p>Realizing human activity recognition is an important issue in pedestrian navigation and intelligent prosthetic control. Utilizing miniature multi-sensor wearable networks is a reliable method to improve the efficiency and convenience of the recognition system. Effective feature extraction and fusion of multimodal signals is a key issue in recognition. Therefore, this paper proposes an enhanced algorithm based on PCA sensor coupling analysis for data preprocessing. Subsequently, an innovative two-channel convolutional neural network with an SPF feature fusion layer as the core is built. The network fully analyzes the local and global features of multimodal signals using the local contrast and luminance properties of feature images. Compared with traditional methods, the model can reduce the data dimensionality and automatically identify and fuse the key information of the signals. In addition, most of the current mode recognition only supports simple actions such as walking and running, this paper constructs a database containing sixteen states by building a network with inertial sensors (IMU), curvature sensors (FLEX) and electromyography sensors (EMG). The experimental results show that the proposed system exhibits better results in complex action recognition and provides a new scheme for the realization of feature fusion and enhancement.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138581597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Truong , Dheryta Jaisinghani , Shubham Jain , Arunesh Sinha , JeongGil Ko , Rajesh Balan
{"title":"Tracking people across ultra populated indoor spaces by matching unreliable Wi-Fi signals with disconnected video feeds","authors":"Hai Truong , Dheryta Jaisinghani , Shubham Jain , Arunesh Sinha , JeongGil Ko , Rajesh Balan","doi":"10.1016/j.pmcj.2023.101860","DOIUrl":"https://doi.org/10.1016/j.pmcj.2023.101860","url":null,"abstract":"<div><p>Tracking in dense indoor environments where several thousands of people move around is an extremely challenging problem. In this paper, we present a system — <em>DenseTrack</em> for tracking people in such environments. <em>DenseTrack</em><span> leverages data from the sensing modalities that are already present in these environments — Wi-Fi (from enterprise network deployments) and Video (from surveillance cameras). We combine Wi-Fi information with video data to overcome the individual errors induced by these modalities. More precisely, the locations derived from video are used to overcome the localization errors<span> inherent in using Wi-Fi signals where precise Wi-Fi MAC IDs are used to locate the same devices across different levels and locations inside a building. Typically, localization<span> in dense environments is a computationally expensive process when done with just video data; hence hard to scale. </span></span></span><em>DenseTrack</em> combines Wi-Fi and video data to improve the accuracy of tracking people that are represented by video objects from non-overlapping video feeds. <em>DenseTrack</em><span> is a scalable and device-agnostic solution as it does not require any app installation on user smartphones or modifications to the Wi-Fi system. At the core of </span><em>DenseTrack</em>, is our algorithm — inCremental Association of Independent Variables under Uncertainty (CAIVU). CAIVU is inspired by the multi-armed bandits model and is designed to handle various complex features of practical real-world environments. CAIVU matches the devices reported by an off-the-shelf Wi-Fi system using connectivity information to specific video blobs obtained through a computationally efficient analysis of video data. By exploiting data from heterogeneous sources, <em>DenseTrack</em> offers an effective real-time solution for individual tracking in heavily populated indoor environments. We emphasize that no other previous system targeted nor was validated in such dense indoor environments. We tested <em>DenseTrack</em> extensively using both simulated data, as well as two real-world validations using data from an extremely dense convention center and a moderately dense university environment. Our simulation results show that <em>DenseTrack</em> achieves an average video-to-Wi-Fi matching accuracy of up to 90% in dense environments with a matching latency of 60 s on the simulator. When tested in a real-world extremely dense environment with over 500,000 people moving between different non-overlapping camera feeds, <em>DenseTrack</em><span> achieved an average match accuracy of 83% to within a 2-people distance with an average latency of 48 s.</span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138474608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid machine learning model for malware analysis in android apps","authors":"Saba Bashir , Farwa Maqbool , Farhan Hassan Khan , Asif Sohail Abid","doi":"10.1016/j.pmcj.2023.101859","DOIUrl":"10.1016/j.pmcj.2023.101859","url":null,"abstract":"<div><p><span>Android<span><span> smartphones have been widely adopted across the globe. They have the capability to access private and confidential information resulting in these devices being targeted by malware devisers. The dramatic escalation of assaults build an awareness to create a robust system that detects the occurrence of malicious actions in </span>Android applications. The malware exposure study consists of static and dynamic analysis. This research work proposed a hybrid </span></span>machine learning<span><span><span> model based on static and dynamic analysis which offers efficient classification and detection of Android malware. The proposed novel malware classification technique can process any android application, then extracts its features, and predicts whether the applications under process is malware or benign. The proposed malware detection model can characterizes diverse malware types from Android platform with high positive rate. The proposed approach detects </span>malicious applications<span><span> in reduced execution time while also improving the security of Android as compared to existing approaches. State-of-the-art machine learning algorithms such as </span>Support Vector Machine, k-Nearest Neighbor, Naïve Bayes, and different ensembles are employed on benign and malign applications to assess the execution of all classifiers on permissions, API calls and intents to identify malware. The proposed technique is evaluated on Drebin, MalGenome and Kaggle dataset, and outcomes indicate that this robust system improved runtime detection of malware with high speed and accuracy. Best accuracy of 100% is achieved on benchmark dataset when compared with </span></span>state of the art techniques. Furthermore, the proposed approach outperforms state of the art techniques in terms of computational time, true positive rate, false positive rate, accuracy, precision, recall, and f-measure.</span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Long Sheng , Yue Chen , Shuli Ning , Shengpeng Wang , Bin Lian , Zhongcheng Wei
{"title":"DA-HAR: Dual adversarial network for environment-independent WiFi human activity recognition","authors":"Long Sheng , Yue Chen , Shuli Ning , Shengpeng Wang , Bin Lian , Zhongcheng Wei","doi":"10.1016/j.pmcj.2023.101850","DOIUrl":"https://doi.org/10.1016/j.pmcj.2023.101850","url":null,"abstract":"<div><p><span><span>As the cornerstone of the development of emerging integrated sensing and communication, human activity recognition technology based on WiFi signals has been extensively studied. However, the existing activity sensing models will suffer serious </span>performance degradation<span><span> when applied to new scenarios due to the influence of environmental dynamics. To address this issue, we present an environment-independent activity recognition model named DA-HAR, which utilizes dual adversarial network. The framework exploits adversarial training among source domain classifiers and source–target domain </span>discriminators to extract environment-independent activity features. To improve the performance of the model, a pseudo-label prediction based approach is introduced to assign labels to the target domain samples that closely resemble the source domain samples, thus mitigating the distribution deviation of activity features between source domain and target domain. Experimental results show that our proposed model has better cross-domain recognition performance compared to state-of-the-art recognition systems, especially when the distribution of activity features in the source domain and the target domain is significantly different, the accuracy is improved by 6.96% </span></span><span><math><mo>∼</mo></math></span> 11.22%.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92014450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MRIM: Lightweight saliency-based mixed-resolution imaging for low-power pervasive vision","authors":"Ji-Yan Wu, Vithurson Subasharan, Tuan Tran, Kasun Gamlath, Archan Misra","doi":"10.1016/j.pmcj.2023.101858","DOIUrl":"https://doi.org/10.1016/j.pmcj.2023.101858","url":null,"abstract":"<div><p><span><span>While many pervasive computing applications increasingly utilize real-time context extracted from a vision sensing infrastructure, the high energy overhead of DNN-based vision sensing pipelines remains a challenge for sustainable in-the-wild deployment. One common approach to reducing such energy overheads is the capture and transmission of lower-resolution images to an edge node (where the </span>DNN inferencing task is executed), but this results in an accuracy-vs-energy tradeoff, as the DNN inference accuracy typically degrades with a drop in resolution. In this work, we introduce </span><em>MRIM</em>, a simple but effective framework to tackle this tradeoff. Under <em>MRIM</em><span>, the vision sensor platform first executes a lightweight preprocessing step to determine the saliency of different sub-regions within a single captured image frame, and then performs a saliency-aware non-uniform downscaling of individual sub-regions to produce a “mixed-resolution” image. We describe two novel low-complexity algorithms that the sensor platform can use to quickly compute suitable resolution choices for different regions under different energy/accuracy constraints. Experimental studies, involving object detection tasks evaluated traces from two benchmark urban monitoring datasets as well as a prototype Raspberry Pi-based </span><em>MRIM</em> implementation, demonstrate <em>MRIM’s</em> efficacy: even with an unoptimized embedded platform, <em>MRIM</em><span> can provide system energy conservation of </span><span><math><mrow><mn>35</mn><mo>+</mo><mtext>%</mtext></mrow></math></span> (<span><math><mo>∼</mo></math></span>80% in high accuracy regimes) or increase task accuracy by <span><math><mrow><mn>8</mn><mo>+</mo><mtext>%</mtext></mrow></math></span><span>, over conventional baselines of uniform resolution downscaling or image encoding, while supporting high throughput. On a low power ESP32 vision board, </span><em>MRIM</em><span> continues to provide 60+% energy savings over uniform downscaling while maintaining high detection accuracy. We further introduce an automated data-driven technique for determining a close-to-optimal number of </span><em>MRIM</em> sub-regions (for differential resolution adjustment), across different deployment conditions. We also show the generalized use of <em>MRIM</em><span> by considering an additional license plate recognition (LPR) task: while alternative approaches suffer 35%–40% loss in accuracy, </span><em>MRIM</em> suffers only a modest recognition loss of <span><math><mo>∼</mo></math></span>10% even when the transmission data is reduced by over 50%.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92108576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}