准确检测地形引起的步态变化所需的最低数据采样要求随移动传感器位置而变化

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Arshad Sher , Otar Akanyeti
{"title":"准确检测地形引起的步态变化所需的最低数据采样要求随移动传感器位置而变化","authors":"Arshad Sher ,&nbsp;Otar Akanyeti","doi":"10.1016/j.pmcj.2024.101994","DOIUrl":null,"url":null,"abstract":"<div><div>Human gait is a key biomarker for health, independence and quality of life. Advances in wearable inertial sensor technologies have paved the way for out-of-the-lab human gait analysis, which is important for the assessment of mobility and balance in natural environments and has applications in multiple fields from healthcare to urban planning. Automatic recognition of the environment where walking takes place is a prerequisite for successful characterisation of terrain-induced gait alterations. A key question which remains unexplored in the field is how minimum data requirements for high terrain classification accuracy change depending on the sensor placement on the body. To address this question, we evaluate the changes in performance of five canonical machine learning classifiers by varying several data sampling parameters including sampling rate, segment length, and sensor configuration. Our analysis on two independent datasets clearly demonstrate that a single inertial measurement unit is sufficient to recognise terrain-induced gait alterations, accuracy and minimum data requirements vary with the device position on the body, and choosing correct data sampling parameters for each position can improve classification accuracy up to 40% or reduce data size by 16 times. Our findings highlight the need for adaptive data collection and processing algorithms for resource-efficient computing on mobile devices.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum data sampling requirements for accurate detection of terrain-induced gait alterations change with mobile sensor position\",\"authors\":\"Arshad Sher ,&nbsp;Otar Akanyeti\",\"doi\":\"10.1016/j.pmcj.2024.101994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human gait is a key biomarker for health, independence and quality of life. Advances in wearable inertial sensor technologies have paved the way for out-of-the-lab human gait analysis, which is important for the assessment of mobility and balance in natural environments and has applications in multiple fields from healthcare to urban planning. Automatic recognition of the environment where walking takes place is a prerequisite for successful characterisation of terrain-induced gait alterations. A key question which remains unexplored in the field is how minimum data requirements for high terrain classification accuracy change depending on the sensor placement on the body. To address this question, we evaluate the changes in performance of five canonical machine learning classifiers by varying several data sampling parameters including sampling rate, segment length, and sensor configuration. Our analysis on two independent datasets clearly demonstrate that a single inertial measurement unit is sufficient to recognise terrain-induced gait alterations, accuracy and minimum data requirements vary with the device position on the body, and choosing correct data sampling parameters for each position can improve classification accuracy up to 40% or reduce data size by 16 times. Our findings highlight the need for adaptive data collection and processing algorithms for resource-efficient computing on mobile devices.</div></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119224001196\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224001196","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人类步态是健康、独立性和生活质量的关键生物标志。可穿戴惯性传感器技术的进步为实验室外的人类步态分析铺平了道路,这对于评估自然环境中的移动性和平衡性非常重要,在医疗保健和城市规划等多个领域都有应用。自动识别行走环境是成功描述地形引起的步态变化的先决条件。该领域尚未探索的一个关键问题是,高地形分类准确性所需的最低数据要求如何随传感器在身体上的位置而变化。为了解决这个问题,我们通过改变数据采样参数(包括采样率、片段长度和传感器配置)来评估五种典型机器学习分类器的性能变化。我们对两个独立数据集的分析清楚地表明,单个惯性测量单元足以识别地形引起的步态变化,准确性和最低数据要求随设备在身体上的位置而变化,为每个位置选择正确的数据采样参数可将分类准确性提高 40%,或将数据量减少 16 倍。我们的研究结果凸显了在移动设备上采用自适应数据收集和处理算法以实现资源节约型计算的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum data sampling requirements for accurate detection of terrain-induced gait alterations change with mobile sensor position
Human gait is a key biomarker for health, independence and quality of life. Advances in wearable inertial sensor technologies have paved the way for out-of-the-lab human gait analysis, which is important for the assessment of mobility and balance in natural environments and has applications in multiple fields from healthcare to urban planning. Automatic recognition of the environment where walking takes place is a prerequisite for successful characterisation of terrain-induced gait alterations. A key question which remains unexplored in the field is how minimum data requirements for high terrain classification accuracy change depending on the sensor placement on the body. To address this question, we evaluate the changes in performance of five canonical machine learning classifiers by varying several data sampling parameters including sampling rate, segment length, and sensor configuration. Our analysis on two independent datasets clearly demonstrate that a single inertial measurement unit is sufficient to recognise terrain-induced gait alterations, accuracy and minimum data requirements vary with the device position on the body, and choosing correct data sampling parameters for each position can improve classification accuracy up to 40% or reduce data size by 16 times. Our findings highlight the need for adaptive data collection and processing algorithms for resource-efficient computing on mobile devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pervasive and Mobile Computing
Pervasive and Mobile Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
7.70
自引率
2.30%
发文量
80
审稿时长
68 days
期刊介绍: As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies. The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信