Yi Ke, Quan Wan, Fangting Xie, Zhen Liang, Ziyu Wu, Xiaohui Cai
{"title":"干扰场景下基于压力分布的二维床内关键点预测","authors":"Yi Ke, Quan Wan, Fangting Xie, Zhen Liang, Ziyu Wu, Xiaohui Cai","doi":"10.1016/j.pmcj.2024.101979","DOIUrl":null,"url":null,"abstract":"<div><div>In-bed pose estimation holds significant potential in various domains, including healthcare, sleep studies, and smart homes. Pressure-sensitive bed sheets have emerged as a promising solution for addressing this task considering the advantages of convenience, comfort, and privacy protection. However, existing studies primarily rely on ideal datasets that do not consider the presence of common daily objects such as pillows and quilts referred to as interference, which can significantly impact the pressure distribution. As a result, there is still a gap between the models trained with ideal data and the real-life application. Besides the end-to-end training approach, one potential solution is to recognize the interference and fuse the interference information to the model during training. In this study, we created a well-annotated dataset, consisting of eight in-bed scenes and four common types of interference: pillows, quilts, a laptop, and a package. To facilitate the analysis, the pixels in the pressure image were categorized into five classes based on the relative position between the interference and the human. We then evaluated the performance of five neural network models for pixel-level interference recognition. The best-performing model achieved an accuracy of 80.0% in recognizing the five categories. Subsequently, we validated the utility of interference recognition in improving pose estimation accuracy. The ideal model initially shows an average joint position error of up to 30.59 cm and a Percentage of Correct Keypoints (PCK) of 0.332 on data from scenes with interferences. After retraining on data including interference, the error is reduced to 13.54 cm and the PCK increases to 0.747. By integrating interference recognition information, either by excluding the parts of the interference or using the recognition results as input, the error can be further minimized to 12.44 cm and the PCK can be maximized up to 0.777. Our findings represent an initial step towards the practical deployment of pressure-sensitive bed sheets in everyday life.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"105 ","pages":"Article 101979"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure distribution based 2D in-bed keypoint prediction under interfered scenes\",\"authors\":\"Yi Ke, Quan Wan, Fangting Xie, Zhen Liang, Ziyu Wu, Xiaohui Cai\",\"doi\":\"10.1016/j.pmcj.2024.101979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In-bed pose estimation holds significant potential in various domains, including healthcare, sleep studies, and smart homes. Pressure-sensitive bed sheets have emerged as a promising solution for addressing this task considering the advantages of convenience, comfort, and privacy protection. However, existing studies primarily rely on ideal datasets that do not consider the presence of common daily objects such as pillows and quilts referred to as interference, which can significantly impact the pressure distribution. As a result, there is still a gap between the models trained with ideal data and the real-life application. Besides the end-to-end training approach, one potential solution is to recognize the interference and fuse the interference information to the model during training. In this study, we created a well-annotated dataset, consisting of eight in-bed scenes and four common types of interference: pillows, quilts, a laptop, and a package. To facilitate the analysis, the pixels in the pressure image were categorized into five classes based on the relative position between the interference and the human. We then evaluated the performance of five neural network models for pixel-level interference recognition. The best-performing model achieved an accuracy of 80.0% in recognizing the five categories. Subsequently, we validated the utility of interference recognition in improving pose estimation accuracy. The ideal model initially shows an average joint position error of up to 30.59 cm and a Percentage of Correct Keypoints (PCK) of 0.332 on data from scenes with interferences. After retraining on data including interference, the error is reduced to 13.54 cm and the PCK increases to 0.747. By integrating interference recognition information, either by excluding the parts of the interference or using the recognition results as input, the error can be further minimized to 12.44 cm and the PCK can be maximized up to 0.777. Our findings represent an initial step towards the practical deployment of pressure-sensitive bed sheets in everyday life.</div></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":\"105 \",\"pages\":\"Article 101979\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119224001044\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224001044","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Pressure distribution based 2D in-bed keypoint prediction under interfered scenes
In-bed pose estimation holds significant potential in various domains, including healthcare, sleep studies, and smart homes. Pressure-sensitive bed sheets have emerged as a promising solution for addressing this task considering the advantages of convenience, comfort, and privacy protection. However, existing studies primarily rely on ideal datasets that do not consider the presence of common daily objects such as pillows and quilts referred to as interference, which can significantly impact the pressure distribution. As a result, there is still a gap between the models trained with ideal data and the real-life application. Besides the end-to-end training approach, one potential solution is to recognize the interference and fuse the interference information to the model during training. In this study, we created a well-annotated dataset, consisting of eight in-bed scenes and four common types of interference: pillows, quilts, a laptop, and a package. To facilitate the analysis, the pixels in the pressure image were categorized into five classes based on the relative position between the interference and the human. We then evaluated the performance of five neural network models for pixel-level interference recognition. The best-performing model achieved an accuracy of 80.0% in recognizing the five categories. Subsequently, we validated the utility of interference recognition in improving pose estimation accuracy. The ideal model initially shows an average joint position error of up to 30.59 cm and a Percentage of Correct Keypoints (PCK) of 0.332 on data from scenes with interferences. After retraining on data including interference, the error is reduced to 13.54 cm and the PCK increases to 0.747. By integrating interference recognition information, either by excluding the parts of the interference or using the recognition results as input, the error can be further minimized to 12.44 cm and the PCK can be maximized up to 0.777. Our findings represent an initial step towards the practical deployment of pressure-sensitive bed sheets in everyday life.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.