Plant Genome最新文献

筛选
英文 中文
Genetic control of root architectural traits under drought stress in spring barley (Hordeum vulgare L.). 干旱胁迫下春大麦(Hordeum vulgare L.)根系结构特征的遗传控制。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-05-19 DOI: 10.1002/tpg2.20463
Md Nurealam Siddiqui, Melisa Jahiu, Mohammad Kamruzzaman, Miguel Sanchez-Garcia, Annaliese S Mason, Jens Léon, Agim Ballvora
{"title":"Genetic control of root architectural traits under drought stress in spring barley (Hordeum vulgare L.).","authors":"Md Nurealam Siddiqui, Melisa Jahiu, Mohammad Kamruzzaman, Miguel Sanchez-Garcia, Annaliese S Mason, Jens Léon, Agim Ballvora","doi":"10.1002/tpg2.20463","DOIUrl":"10.1002/tpg2.20463","url":null,"abstract":"<p><p>Root architectural traits play pivotal roles in plant adaptation to drought stress, and hence they are considered promising targets in breeding programs. Here, we phenotyped eight root architecture traits in response to well-watered and drought stress conditions in 200 spring barley (Hordeum vulgare L.) inbred lines over two consecutive field seasons. Root architecture traits were less developed under drought in both seasons when compared with control treatments. Genetic variation in root architectural traits was dissected employing a genome-wide association study (GWAS) coupled with linkage disequilibrium mapping. GWAS uncovered a total of 186 significant single nucleotide polymorphism-trait associations for eight root traits under control, drought, and drought-related indices. Of these, a few loci for root traits were detected on chromosomes 3 and 5, which co-located with QTL identified in previous studies. Interestingly, 13 loci showed simultaneou associations with multiple root traits under drought and drought-related indices. These loci harbored candidate genes, which included a wide range of drought-responsive components such as transcription factors, binding proteins, protein kinases, nutrient and ion transporters, and stress signaling factors. For instance, two candidate genes, HORVU7Hr3G0713160 and HORVU6H r3G0626550, are orthologous to AtACX3 and AtVAMPs, which have reported functions in root length-mediated drought tolerance and as a key protein in abiotic stress tolerance, respectively. Interestingly, one of these loci underlying a high-confidence candidate gene NEW ENHANCER OF ROOT DWARFISM1 (NERD1) showed involvement with root development. An allelic variation of this locus in non-coding region was significantly associated with increased root length under drought. Collectively, these results offer promising multi-trait affecting loci and candidate genes underlying root phenotypic responses to drought stress, which may provide valuable resources for genetic improvement of drought tolerance in barley.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementing multi-trait genomic selection to improve grain milling quality in oats (Avena sativa L.). 实施多性状基因组选择,提高燕麦(Avena sativa L.)的谷物研磨质量。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-05-19 DOI: 10.1002/tpg2.20457
Anup Dhakal, Jesse Poland, Laxman Adhikari, Ethan Faryna, Jason Fiedler, Jessica E Rutkoski, Juan David Arbelaez
{"title":"Implementing multi-trait genomic selection to improve grain milling quality in oats (Avena sativa L.).","authors":"Anup Dhakal, Jesse Poland, Laxman Adhikari, Ethan Faryna, Jason Fiedler, Jessica E Rutkoski, Juan David Arbelaez","doi":"10.1002/tpg2.20457","DOIUrl":"10.1002/tpg2.20457","url":null,"abstract":"<p><p>Oats (Avena sativa L.) provide unique nutritional benefits and contribute to sustainable agricultural systems. Breeding high-value oat varieties that meet milling industry standards is crucial for satisfying the demand for oat-based food products. Test weight, thins, and groat percentage are primary traits that define oat milling quality and the final price of food-grade oats. Conventional selection for milling quality is costly and burdensome. Multi-trait genomic selection (MTGS) combines information from genome-wide markers and secondary traits genetically correlated with primary traits to predict breeding values of primary traits on candidate breeding lines. MTGS can improve prediction accuracy and significantly accelerate the rate of genetic gain. In this study, we evaluated different MTGS models that used morphometric grain traits to improve prediction accuracy for primary grain quality traits within the constraints of a breeding program. We evaluated 558 breeding lines from the University of Illinois Oat Breeding Program across 2 years for primary milling traits, test weight, thins, and groat percentage, and secondary grain morphometric traits derived from kernel and groat images. Kernel morphometric traits were genetically correlated with test weight and thins percentage but were uncorrelated with groat percentage. For test weight and thins percentage, the MTGS model that included the kernel morphometric traits in both training and candidate sets outperformed single-trait models by 52% and 59%, respectively. In contrast, MTGS models for groat percentage were not significantly better than the single-trait model. We found that incorporating kernel morphometric traits can improve the genomic selection for test weight and thins percentage.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide development of intra- and inter-specific transferable SSR markers and construction of a dynamic web resource for yam molecular breeding: Y2MD. 在全基因组范围内开发特异性内和特异性间可转移的 SSR 标记,并为山药分子育种构建动态网络资源:Y2MD。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-01-17 DOI: 10.1002/tpg2.20428
Moussa Diouf, Yedomon Ange Bovys Zoclanclounon, Pape Adama Mboup, Diaga Diouf, Erick Malédon, Ronan Rivallan, Hâna Chair, Komivi Dossa
{"title":"Genome-wide development of intra- and inter-specific transferable SSR markers and construction of a dynamic web resource for yam molecular breeding: Y2MD.","authors":"Moussa Diouf, Yedomon Ange Bovys Zoclanclounon, Pape Adama Mboup, Diaga Diouf, Erick Malédon, Ronan Rivallan, Hâna Chair, Komivi Dossa","doi":"10.1002/tpg2.20428","DOIUrl":"10.1002/tpg2.20428","url":null,"abstract":"<p><p>Microsatellite markers are widely used in population genetics and breeding. Despite the economic significance of yams in developing countries, there is a paucity of microsatellite markers, and as of now, no comprehensive microsatellite marker database exists. In this study, we conducted genome-wide microsatellite marker development across four yam species, identified cross-species transferable markers, and designed an easy-to-use web portal for the yam researchers. The screening of Dioscorea alata, Dioscorea rotundata, Dioscorea dumetorum, and Dioscorea zingiberensis genomes resulted in 318,713, 322,501, 307,040, and 253,856 microsatellites, respectively. Mono-, di-, and tri-nucleotides were the most important types of repeats in the different species, and a total of 864,128 primer pairs were designed. Furthermore, we identified 1170 cross-species transferable microsatellite markers. Among them, 17 out of 18 randomly selected were experimentally validated with good discriminatory power, regardless of the species and ploidy levels. Ultimately, we created and deployed a dynamic Yam Microsatellite Markers Database (Y2MD) available at https://y2md.ucad.sn/. Y2MD is embedded with various useful tools such as JBrowse, Blast, insilicoPCR, and SSR Finder to facilitate the exploitation of microsatellite markers in yams. This study represents the first comprehensive microsatellite marker mining across several yam species and will contribute to advancing yam genetic research and marker-assisted breeding. The released user-friendly database constitutes a valuable platform for yam researchers.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139486592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-locus genome-wide association study reveal genomic regions underlying root system architecture traits in Ethiopian sorghum germplasm. 多焦点全基因组关联研究揭示了埃塞俄比亚高粱种质根系结构性状的基因组区域。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-02-15 DOI: 10.1002/tpg2.20436
Masarat Elias, Diriba Chere, Dagnachew Lule, Desalegn Serba, Alemu Tirfessa, Dandena Gelmesa, Tesfaye Tesso, Kassahun Bantte, Temesgen M Menamo
{"title":"Multi-locus genome-wide association study reveal genomic regions underlying root system architecture traits in Ethiopian sorghum germplasm.","authors":"Masarat Elias, Diriba Chere, Dagnachew Lule, Desalegn Serba, Alemu Tirfessa, Dandena Gelmesa, Tesfaye Tesso, Kassahun Bantte, Temesgen M Menamo","doi":"10.1002/tpg2.20436","DOIUrl":"10.1002/tpg2.20436","url":null,"abstract":"<p><p>The identification of genomic regions underlying the root system architecture (RSA) is vital for improving crop abiotic stress tolerance. To improve sorghum (Sorghum bicolor L. Moench) for environmental stress tolerance, information on genetic variability and genomic regions linked to RSA traits is paramount. The aim of this study was, therefore, to investigate common quantitative trait nucleotides (QTNs) via multiple methodologies and identify genomic regions linked to RSA traits in a panel of 274 Ethiopian sorghum accessions. Multi-locus genome-wide association study was conducted using 265,944 high-quality single nucleotide polymorphism markers. Considering the QTN detected by at least three different methods, a total of 17 reliable QTNs were found to be significantly associated with root angle, number, length, and dry weight. Four QTNs were detected on chromosome SBI-05, followed by SBI-01 and SBI-02 with three QTNs each. Among the 17 QTNs, 11 are colocated with previously identified root traits quantitative trait loci and the remaining six are genome regions with novel genes. A total of 118 genes are colocated with these up- and down-streams of the QTNs. Moreover, five QTNs were found intragenic. These QTNs are S5_8994835 (number of nodal roots), S10_55702393 (number of nodal roots), S1_56872999 (nodal root angle), S9_1212069 (nodal root angle), and S5_5667192 (root dry weight) intragenic regions of Sobic.005G073101, Sobic.010G198000, Sobic.001G273000, Sobic.009G013600, and Sobic.005G054700, respectively. Particularly, Sobic.005G073101, Sobic.010G198000, and Sobic.009G013600 were found responsible for the plant growth hormone-induced RSA. These genes may regulate root development in the seedling stage. Further analysis on these genes might be important to explore the genetic structure of RSA of sorghum.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Bayesian optimization R package for multitrait parental selection. 用于多特征亲本选择的贝叶斯优化 R 软件包。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-02-22 DOI: 10.1002/tpg2.20433
Bartolo de J Villar-Hernández, Susanne Dreisigacker, Leo Crespo, Paulino Pérez-Rodríguez, Sergio Pérez-Elizalde, Fernando Toledo, José Crossa
{"title":"A Bayesian optimization R package for multitrait parental selection.","authors":"Bartolo de J Villar-Hernández, Susanne Dreisigacker, Leo Crespo, Paulino Pérez-Rodríguez, Sergio Pérez-Elizalde, Fernando Toledo, José Crossa","doi":"10.1002/tpg2.20433","DOIUrl":"10.1002/tpg2.20433","url":null,"abstract":"<p><p>Selecting and mating parents in conventional phenotypic and genomic selection are crucial. Plant breeding programs aim to improve the economic value of crops, considering multiple traits simultaneously. When traits are negatively correlated and/or when there are missing records in some traits, selection becomes more complex. To address this problem, we propose a multitrait selection approach using the Multitrait Parental Selection (MPS) R package-an efficient tool for genetic improvement, precision breeding, and conservation genetics. The package employs Bayesian optimization algorithms and three loss functions (Kullback-Leibler, Energy Score, and Multivariate Asymmetric Loss) to identify parental candidates with desirable traits. The software's functionality includes three main functions-EvalMPS, FastMPS, and ApproxMPS-catering to different data availability scenarios. Through the presented application examples, the MPS R package proves effective in multitrait genomic selection, enabling breeders to make informed decisions and achieve strong performance across multiple traits.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome editing in rice and tomato with a small Un1Cas12f1 nuclease. 用小型 Un1Cas12f1 核酸酶编辑水稻和番茄的基因组。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-05-28 DOI: 10.1002/tpg2.20465
Xu Tang, Ayman Eid, Rui Zhang, Yanhao Cheng, Annan Liu, Yurong Chen, Pengxu Chen, Yong Zhang, Yiping Qi
{"title":"Genome editing in rice and tomato with a small Un1Cas12f1 nuclease.","authors":"Xu Tang, Ayman Eid, Rui Zhang, Yanhao Cheng, Annan Liu, Yurong Chen, Pengxu Chen, Yong Zhang, Yiping Qi","doi":"10.1002/tpg2.20465","DOIUrl":"10.1002/tpg2.20465","url":null,"abstract":"<p><p>The clustered regularly interspaced short palindromic repeats (CRISPR) systems have been demonstrated to be the foremost compelling genetic tools for manipulating prokaryotic and eukaryotic genomes. Despite the robustness and versatility of Cas9 and Cas12a/b nucleases in mammalian cells and plants, their large protein sizes may hinder downstream applications. Therefore, investigating compact CRISPR nucleases will unlock numerous genome editing and delivery challenges that constrain genetic engineering and crop development. In this study, we assessed the archaeal miniature Un1Cas12f1 type-V CRISPR nuclease for genome editing in rice and tomato protoplasts. By adopting the reengineered guide RNA modifications ge4.1 and comparing polymerase II (Pol II) and polymerase III (Pol III) promoters, we demonstrated uncultured archaeon Cas12f1 (Un1Cas12f1) genome editing efficacy in rice and tomato protoplasts. We characterized the protospacer adjacent motif (PAM) requirements and mutation profiles of Un1Cas12f1 in both plant species. Interestingly, we found that Pol III promoters, not Pol II promoters, led to higher genome editing efficiency when they were used to drive guide RNA expression. Unlike in mammalian cells, the engineered Un1Cas12f1-RRA variant did not perform better than the wild-type Un1Cas12f1 nuclease, suggesting continued protein engineering and other innovative approaches are needed to further improve Un1Cas12f1 genome editing in plants.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the genetic basis of resistance to Neopestalotiopsis species in strawberry. 探索草莓对新桔梗属植物抗性的遗传基础。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-05-31 DOI: 10.1002/tpg2.20477
Elissar Alam, Catalina Moyer, Sujeet Verma, Natalia A Peres, Vance M Whitaker
{"title":"Exploring the genetic basis of resistance to Neopestalotiopsis species in strawberry.","authors":"Elissar Alam, Catalina Moyer, Sujeet Verma, Natalia A Peres, Vance M Whitaker","doi":"10.1002/tpg2.20477","DOIUrl":"10.1002/tpg2.20477","url":null,"abstract":"<p><p>Aggressive strains of Neopestalotiopsis sp. have recently emerged as devastating pathogens of strawberry (Fragaria × ananassa Duchesne ex Rozier), infecting nearly all plant parts and causing severe outbreaks of leaf spot and fruit rot in Florida and globally. The development of host resistance is imperative due to the absence of fungicides that effectively inhibit Neopestalotiopsis sp. growth on an infected strawberry crop. Here, we analyzed 1578 individuals from the University of Florida's (UF) strawberry breeding program to identify and dissect genetic variation for resistance to Neopestalotiopsis sp. and to explore the feasibility of genomic selection. We found that less than 12% of elite UF germplasm exhibited resistance, with narrow-sense heritability estimates ranging from 0.28 to 0.69. Through genome-wide association studies (GWAS), we identified two loci accounting for 7%-16% of phenotypic variance across four trials and 3 years. Several candidate genes encoding pattern recognition receptors, intra-cellular nucleotide-binding leucine-rich repeats, and downstream components of plant defense pathways co-localized with the Neopestalotiopsis sp. resistance loci. Interestingly, favorable alleles at the largest-effect locus were rare in elite UF material and had previously been unintentionally introduced from an exotic cultivar. The array-based markers and candidate genes described herein provide the foundation for targeting this locus through marker-assisted selection. The predictive abilities of genomic selection models, with and without explicitly modeling peak GWAS markers as fixed effects, ranged between 0.25 and 0.59, suggesting that genomic selection holds promise for enhancing resistance to Neopestalotiopsis sp. in strawberry.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome-wide scanning to identify and validate single nucleotide polymorphism markers associated with drought tolerance in spring wheat seedlings. 通过全基因组扫描,识别并验证与春小麦幼苗耐旱性相关的单核苷酸多态性标记。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-03-13 DOI: 10.1002/tpg2.20444
Ahmed Sallam, Mona F A Dawood, Diego Jarquín, Elsayed A Mohamed, Mohamed Y Hussein, Andreas Börner, Asmaa A M Ahmed
{"title":"Genome-wide scanning to identify and validate single nucleotide polymorphism markers associated with drought tolerance in spring wheat seedlings.","authors":"Ahmed Sallam, Mona F A Dawood, Diego Jarquín, Elsayed A Mohamed, Mohamed Y Hussein, Andreas Börner, Asmaa A M Ahmed","doi":"10.1002/tpg2.20444","DOIUrl":"10.1002/tpg2.20444","url":null,"abstract":"<p><p>Unlike other growth stages of wheat, very few studies on drought tolerance have been done at the seedling stage, and this is due to the complexity and sensitivity of this stage to drought stress resulting from climate change. As a result, the drought tolerance of wheat seedlings is poorly understood and very few genes associated with drought tolerance at this stage were identified. To address this challenge, a set of 172 spring wheat genotypes representing 20 different countries was evaluated under drought stress at the seedling stage. Drought stress was applied on all tested genotypes by water withholding for 13 days. Two types of traits, namely morphological and physiological traits were scored on the leaves of all tested genotypes. Genome-wide association study (GWAS) is one of the effective genetic analysis methods that was used to identify target single nucleotide polymorphism (SNP) markers and candidate genes for later use in marker-assisted selection. The tested plant materials were genotyped using 25k Infinium iSelect array (25K) (herein after it will be identified as 25K) (for 172 genotypes) and genotyping-by-sequencing (GBS) (for 103 genotypes), respectively. The results of genotyping revealed 21,093 25K and 11,362 GBS-SNPs, which were used to perform GWAS analysis for all scored traits. The results of GWAS revealed that 131 and 55 significant SNPs were controlling morphological and physiological traits, respectively. Moreover, a total of eight and seven SNP markers were found to be associated with more than one morphological and physiological trait under drought stress, respectively. Remarkably, 10 significant SNPs found in this study were previously reported for their association with drought tolerance in wheat. Out of the 10 validated SNP markers, four SNPs were associated with drought at the seedling stage, while the remaining six SNPs were associated with drought stress at the reproductive stage. Moreover, the results of gene enrichment revealed 18 and six pathways as highly significant biological and molecular pathways, respectively. The selection based on drought-tolerant alleles revealed 15 genotypes with the highest number of different drought-tolerant alleles. These genotypes can be used as candidate parents in future breeding programs to produce highly drought-tolerant genotypes with high genetic diversity. Our findings in this study provide novel markers and useful information on the genetic basis of drought tolerance at early growth stages.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140111906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methylation of microRNA genes and its effect on secondary xylem development of stem in poplar. 微RNA基因的甲基化及其对杨树茎次生木质部发育的影响
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-03-25 DOI: 10.1002/tpg2.20446
Ruiqi Wang, Meixuan Wu, Xiao Zhang, Tingbo Jiang, Zhigang Wei
{"title":"Methylation of microRNA genes and its effect on secondary xylem development of stem in poplar.","authors":"Ruiqi Wang, Meixuan Wu, Xiao Zhang, Tingbo Jiang, Zhigang Wei","doi":"10.1002/tpg2.20446","DOIUrl":"10.1002/tpg2.20446","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) and DNA methylation are both vital regulators of gene expression. DNA methylation can affect the transcription of miRNAs, just like coding genes, through methylating the CpG islands in the gene regions of miRNAs. Although previous studies have shown that DNA methylation and miRNAs can each be involved in the process of wood formation, the relationship between the two has been relatively little studied in plant wood formation. Studies have shown that the second internode (IN2) (from top to bottom) of 3-month-old poplar trees can represent the primary stage of poplar stem development and IN8 can represent the secondary stage. There were also significant differences in DNA methylation patterns and miRNA expression patterns obtained from PS and SS. In this study, we first interactively analyzed methylation and miRNA sequencing data to identify 43 differentially expressed miRNAs regulated by differential methylation from the primary stage and secondary stage, which were found to be involved in multiple biological processes related to wood formation by enrichment analysis. In addition, six miRNA/target gene modules were finally identified as potentially involved in secondary xylem development of poplar stems through degradome sequencing and functional analysis. In conclusion, this study provides important reference information on the mechanism of interaction between different regulatory pathways of wood formation.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140289377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding genome structure facilitates the use of wild lentil germplasm for breeding: A case study with shattering loci. 了解基因组结构有助于利用野生扁豆种质进行育种:破碎位点案例研究。
IF 3.9 2区 生物学
Plant Genome Pub Date : 2024-06-01 Epub Date: 2024-05-15 DOI: 10.1002/tpg2.20455
Zhe Cao, Didier Socquet-Juglard, Ketema Daba, Albert Vandenberg, Kirstin E Bett
{"title":"Understanding genome structure facilitates the use of wild lentil germplasm for breeding: A case study with shattering loci.","authors":"Zhe Cao, Didier Socquet-Juglard, Ketema Daba, Albert Vandenberg, Kirstin E Bett","doi":"10.1002/tpg2.20455","DOIUrl":"10.1002/tpg2.20455","url":null,"abstract":"<p><p>Plant breeders are generally reluctant to cross elite crop cultivars with their wild relatives to introgress novel desirable traits due to associated negative traits such as pod shattering. This results in a genetic bottleneck that could be reduced through better understanding of the genomic locations of the gene(s) controlling this trait. We integrated information on parental genomes, pod shattering data from multiple environments, and high-density genetic linkage maps to identify pod shattering quantitative trait loci (QTLs) in three lentil interspecific recombinant inbred line populations. The broad-sense heritability on a multi-environment basis varied from 0.46 (in LR-70, Lens culinaris × Lens odemensis) to 0.77 (in LR-68, Lens orientalis × L. culinaris). Genetic linkage maps of the interspecific populations revealed reciprocal translocations of chromosomal segments that differed among the populations, and which were associated with reduced recombination. LR-68 had a 2-5 translocation, LR-70 had 1-5, 2-6, and 2-7 translocations, and LR-86 had a 2-7 translocation in one parent relative to the other. Segregation distortion was also observed for clusters of single nucleotide polymorphisms on multiple chromosomes per population, further affecting introgression. Two major QTL, on chromosomes 4 and 7, were repeatedly detected in the three populations and contain several candidate genes. These findings will be of significant value for lentil breeders to strategically access novel superior alleles while minimizing the genetic impact of pod shattering from wild parents.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信