{"title":"Variation for QTL alleles associated with total dissolved solids among crop types in a GWAS of a Beta vulgaris diversity panel.","authors":"Audrey Pelikan, Irwin L Goldman","doi":"10.1002/tpg2.70014","DOIUrl":null,"url":null,"abstract":"<p><p>Sweetness is a main component of the table beet (Beta vulgaris L.) flavor profile and a key determinant of its market success for fresh consumption. Total dissolved solids (TDS) is a proxy for sugar content in produce and are easily measured through a refractometer, making TDS valuable in breeding programs focused on increasing sweetness. A diversity panel of 238 accessions from the Beta vulgaris crop complex and wild relatives was assembled and genotyped using genotyping-by-sequencing, yielding 10,237 single nucleotide polymorphisms (SNPs) from 226 full panel accessions and 9,847 SNPs from table beet only accessions after filtering. The panel was phenotyped in field trials over 2 years and mean values were adjusted using best linear unbiased estimates. TDS levels varied among crop types and a broad-sense heritability of 0.90 indicated that phenotypic differences can be attributed in large part to genetic variation. A genome-wide association study (GWAS) uncovered four quantitative trait loci (QTLs) identified across multiple models to significantly associate with TDS. A QTL on chromosome 2 was consistently identified among GWAS models, explaining 12.1%-62.6% of the phenotypic variation in the full panel. Bevul.2G176300, a gene directly involved in the sucrose biosynthesis pathway, was located downstream the significant marker. A second QTL identified on chromosome 7 revealed QTL alleles that may differentiate between table beet accessions, explaining nearly half the phenotypic variation, and is the first QTL reported in association with TDS unique to table beet. The QTL described can be used to efficiently breed for higher TDS levels in Beta vulgaris, avoiding intercrop type crosses and linkage drag.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e70014"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.70014","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Sweetness is a main component of the table beet (Beta vulgaris L.) flavor profile and a key determinant of its market success for fresh consumption. Total dissolved solids (TDS) is a proxy for sugar content in produce and are easily measured through a refractometer, making TDS valuable in breeding programs focused on increasing sweetness. A diversity panel of 238 accessions from the Beta vulgaris crop complex and wild relatives was assembled and genotyped using genotyping-by-sequencing, yielding 10,237 single nucleotide polymorphisms (SNPs) from 226 full panel accessions and 9,847 SNPs from table beet only accessions after filtering. The panel was phenotyped in field trials over 2 years and mean values were adjusted using best linear unbiased estimates. TDS levels varied among crop types and a broad-sense heritability of 0.90 indicated that phenotypic differences can be attributed in large part to genetic variation. A genome-wide association study (GWAS) uncovered four quantitative trait loci (QTLs) identified across multiple models to significantly associate with TDS. A QTL on chromosome 2 was consistently identified among GWAS models, explaining 12.1%-62.6% of the phenotypic variation in the full panel. Bevul.2G176300, a gene directly involved in the sucrose biosynthesis pathway, was located downstream the significant marker. A second QTL identified on chromosome 7 revealed QTL alleles that may differentiate between table beet accessions, explaining nearly half the phenotypic variation, and is the first QTL reported in association with TDS unique to table beet. The QTL described can be used to efficiently breed for higher TDS levels in Beta vulgaris, avoiding intercrop type crosses and linkage drag.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.