Xiangyang Xu, Genqiao Li, Guihua Bai, Jim Kolmer, Yuzhou Xu, Amy Bernardo, Brett F Carver, Chengcheng Tan
{"title":"Characterization of a new Lr52 allele for leaf rust resistance in the Iranian wheat landrace PI 622111.","authors":"Xiangyang Xu, Genqiao Li, Guihua Bai, Jim Kolmer, Yuzhou Xu, Amy Bernardo, Brett F Carver, Chengcheng Tan","doi":"10.1002/tpg2.70003","DOIUrl":null,"url":null,"abstract":"<p><p>Leaf rust, caused by Puccinia triticina (Pt), poses a constant threat to global wheat production, and novel leaf rust resistance genes are needed to combat the disease. A previous genome-wide association study (GWAS) identified a single nucleotide polymorphism (SNP) marker associated with leaf rust resistance in the terminal region of chromosome arm 5BS in the Iranian landrace PI 622111. An F<sub>2</sub> population and 175 F<sub>2:3</sub> families from cross PI 622111 × Yuanyu 3 were evaluated for response to Pt isolate Pt52-2 (MMPSD). Genotyping-by-sequencing analysis and genotyping of a subset of the F<sub>2</sub> plants identified 32 SNPs closely associated with leaf rust resistance in the target region. Some of these SNPs were converted into kompetitive allele-specific polymorphic (KASP) markers and used to genotype the F<sub>2</sub> population together with a set of simple sequence repeat (SSR) markers also located in the target genomic region. Linkage analysis delimited the leaf rust resistance gene in PI 622111, designated Lr622111, to a 0.4 Mb interval flanked by Xstars700 (7.22 Mb) and Xstars678 (7.62 Mb) in IWGSC RefSeq v.2.1. An allelism test involving 811 F<sub>2</sub> plants indicated that Lr622111 was allelic to Lr52. Since PI 622111 reacted differently from the Lr52 donor to Pt races in the GWAS, Lr622111 is considered a new Lr52 allele conferring a wide spectrum of resistance to current US Pt races. KASP marker Xstars-KASP239, which is 0.9 cM distal to Lr622111, can be widely used to tag Lr622111 in breeding populations.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":"18 1","pages":"e70003"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.70003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Leaf rust, caused by Puccinia triticina (Pt), poses a constant threat to global wheat production, and novel leaf rust resistance genes are needed to combat the disease. A previous genome-wide association study (GWAS) identified a single nucleotide polymorphism (SNP) marker associated with leaf rust resistance in the terminal region of chromosome arm 5BS in the Iranian landrace PI 622111. An F2 population and 175 F2:3 families from cross PI 622111 × Yuanyu 3 were evaluated for response to Pt isolate Pt52-2 (MMPSD). Genotyping-by-sequencing analysis and genotyping of a subset of the F2 plants identified 32 SNPs closely associated with leaf rust resistance in the target region. Some of these SNPs were converted into kompetitive allele-specific polymorphic (KASP) markers and used to genotype the F2 population together with a set of simple sequence repeat (SSR) markers also located in the target genomic region. Linkage analysis delimited the leaf rust resistance gene in PI 622111, designated Lr622111, to a 0.4 Mb interval flanked by Xstars700 (7.22 Mb) and Xstars678 (7.62 Mb) in IWGSC RefSeq v.2.1. An allelism test involving 811 F2 plants indicated that Lr622111 was allelic to Lr52. Since PI 622111 reacted differently from the Lr52 donor to Pt races in the GWAS, Lr622111 is considered a new Lr52 allele conferring a wide spectrum of resistance to current US Pt races. KASP marker Xstars-KASP239, which is 0.9 cM distal to Lr622111, can be widely used to tag Lr622111 in breeding populations.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.